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Preface

The Toolkit for Advanced Optimization (TAO) focuses on the development of algorithms
and software for the solution of large-scale optimization problems on high-performance
architectures. Areas of interest include nonlinear least squares, unconstrained and bound-
constrained optimization, and general nonlinear optimization.

The development of TAO was motivated by the scattered support for parallel compu-
tations and the lack of reuse of external toolkits in current optimization software. Our
aim is to use object-oriented techniques to produce high-quality optimization software for a
range of computing environments ranging from serial workstations and laptops to massively
parallel high-performance architectures. Our design decisions are strongly motivated by the
challenges inherent in the use of large-scale distributed memory architectures and the reality
of working with large, often poorly structured legacy codes for specific applications.

This manual describes the use of TAO. Since TAO is still under development, changes
in usage and calling sequences may occur. TAO is fully supported; see the the web site
http://www.mcs.anl.gov/tao for information on contacting the TAO developers.
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Chapter 1

Introduction to TAO

The Toolkit for Advanced Optimization (TAO) focuses on the design and implementation
of optimization software for the solution of large-scale optimization applications on high-
performance architectures. Our approach is motivated by the scattered support for parallel
computations and lack of reuse of linear algebra software in currently available optimization
software. The TAO design allows the reuse of toolkits that provide lower-level support
(parallel sparse matrix data structures, preconditioners, solvers), and thus we are able to
build on top of these toolkits instead of having to redevelop code. The advantages in terms
of efficiency and development time are significant.

The TAO design philosophy uses object-oriented techniques of data and state encapsula-
tion, abstract classes, and limited inheritance to create a flexible optimization toolkit. This
chapter provides a short introduction to our design philosophy by describing the objects in
TAO and the importance of this design. Since a major concern in the TAO project is the
performance and scalability of optimization algorithms on large problems, we also present
some performance resuls.

1.1 TAO Design Philosophy

The TAO design philosophy place strongs emphasis on the reuse of external tools where ap-
propriate. Our design enables bidirectional connection to lower-level linear algebra support
(e.g. parallel sparse matrix data structures) provided in toolkits such as PETSc [3] [4, 2]
as well as higher-level application frameworks. Our design decisions are strongly motivated
by the challenges inherent in the use of large-scale distributed memory architectures and
the reality of working with large and often poorly structured legacy codes for specific ap-
plications. Figure 1.1 illustrates how the TAO software works with external libraries and
application code.

The TAO solvers use four fundamental objects to define and solve optimization prob-
lems: vectors, index sets, matrices, and linear solvers. The concepts of vectors and matrices
are standard, while an index set refers to a set of integers used to identify particular elements
of vectors or matrices. An optimization algorithm is a sequence of well defined operations
on these objects. These operations include vector sums, inner products, and matrix-vector
multiplication. TAO makes no assumptions about the representation of these objects by
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Figure 1.1: TAO Design

passing pointers to data-structure-neutral objects for the execution of these numerical op-
erations.

With sufficiently flexible abstract interfaces, TAO can support a variety of implementa-
tions of data structures and algorithms. These abstractions allow us to more easily experi-
ment with a range of algorithmic and data structure options for realistic problems, such as
within this case study. Such capabilities are critical for making high-performance optimiza-
tion software adaptable to the continual evolution of parallel and distributed architectures
and the research community’s discovery of new algorithms that exploit their features.

Our current TAO implementation uses the parallel system infrastructure and linear
algebra objects offered by PETSc, which uses MPI [13] for all interprocessor communication.
The PETSc package supports objects for vectors, matrices, index sets, and linear solvers.

The TAO design philosophy eliminates some of the barriers in using independently
developed software components by accepting data that is independent of representation and
calling sequence written for particular data formats. The user can initialize an application
with external frameworks, provide function information to a TAO solver, and call TAO to
solve the application problem.

The use of abstractions for matrices and vectors in TAO optimization software also
enables us to leverage automatic differentiation technology to facilitate the parallel compu-
tation of gradients and Hessians needed within optimization algorithms. We have demon-
strated the viability of this approach through preliminary interfacing between TAO solvers
and the automatic differentiation tools ADIFOR and ADIC. We are currently working on
developing TAO interfaces that use special problem features (for example, partial separa-
bility, stencil information) in automatic differentiation computations.
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Figure 1.2: The journal bearing problem with ε = 0.9

1.2 Performance Results

A major concern in the TAO project is the performance and scalability of optimization
algorithms on large problems. In this section we focus on the GPCG (gradient projection,
conjugate gradient) algorithm for the solution of bound-constrained convex quadratic pro-
gramming problems. Originally developed by Moré and Toraldo [20], the GPCG algorithm
was designed for large-scale problems but had only been implemented for a single processor.
GPCG combines the advantages of the identification properties of the gradient projection
method with the finite termination properties of the conjugate gradient method. Moreover,
the performance of the TAO implementation on large optimization problems is noteworthy.

We illustrate the performance of the GPCG algorithm by presenting results for a journal
bearing problem with over 2.5 million variables. The journal bearing problem is a finite
element approximation to a variational problem over a rectangular two-dimensional grid. A
grid with 1600 points in each direction, for example, is formulated as a bound constrained
quadratic problem with 16002 = 2, 560, 000 variables. The triangulation of the grid results
in a matrix that has the usual five diagonal nonzero structure that arises from a difference
approximation to the Laplacian operator. The journal bearing problem contains an eccen-
tricity parameter, ε ∈ (0, 1), that influences the number of active variables at the solution
and the difficulty in solving it. Figure 1.2 shows the solution of the journal bearing problem
for ε = 0.9. The steep gradient in the solution makes this problem a difficult benchmark.

The performance results in Table 1.1 are noteworthy is several ways. First of all, the
number of faces visited by GPCG is remarkably small. Other strategies can lead to a large
number of gradient projection iterates, but the GPCG algorithm is remarkably efficient.
Another interesting aspect of these results is that due to the low memory requirements
of iterative solvers, we were able to solve these problems with only p = 8 processors.
Strategies that rely on direct solvers are likely to need significantly more storage, and thus
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more processors. Finally, these results show that the GPCG implementation has excellent
efficiency. For example, the efficiency of GPCG with respect to p = 8 processors ranges
between 70% and 100% when ε = 0.1. This sustained efficiency is remarkable since the
GPCG algorithm is solving a sequence of linear problems with a coefficient matrix set
to the submatrix of the Hessian matrix with respect to the free variables for the current
iterate. Thus, our implementation’s repartitioning of submatrices effectively deals with the
load-balancing problem that is inherent in the GPCG algorithm.

ε p faces nCG time tCG% E
0.1 8 46 431 7419 86 100
0.1 16 45 423 3706 83 100
0.1 32 45 427 2045 82 91
0.1 64 45 427 1279 82 73
0.9 8 37 105 2134 70 100
0.9 16 37 103 1124 71 95
0.9 32 38 100 618 69 86
0.9 64 38 99 397 68 67

Table 1.1: Performance of GPCG on the journal bearing problem with 2.56 · 106 variables.

An important aspect of our results that is not apparent from Table 1.1 is that for these
results we were able to experiment easily with all the preconditioners offered by PETSc. In
particular, we were able to compare the diagonal Jacobi preconditioner with block Jacobi
and overlapping additive Schwarz preconditioners that use a zero-fill ILU solver in each
block. We also experimented with a parallel zero-fill incomplete Cholesky preconditioner
provided by a PETSc interface to the BlockSolve95 [15] package of Jones and Plassmann.
Interestingly enough, the diagonal Jacobi preconditioner achieved better performance on
this problem.
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Chapter 2

Getting Started

TAO can be used on a personal computer with a single processor or within a parallel
environment. Its basic usage involves only a few commands, but fully understanding its
usage requires time. Application programmers can easily begin to use TAO by working with
some examples provides in the package and then gradually learn more details according to
their needs. The current version of TAO and the most recent help concerning the installation
and usage of TAO can be found at http://www.mcs.anl.gov/tao/.

The current version of TAO requires an ANSI C++ compiler, an implementation of MPI,
Version 2.3.3 of PETSc compiled with the C++ compiler, (PETSc must be configured with
the --with-clanguage=C++ option) and at least 15 MB of free disk space. During the setup
process, the user will have to set an environmental variable, TAO DIR, indicating the full
path of the TAO home directory. This variable will be used in this manual to refer to the
location of files, and by computers that will compile TAO source code.

2.1 Writing Application Codes with TAO

The examples throughout the library demonstrate the software usage and can serve as
templates for developing custom applications. We suggest that new TAO users examine
programs in

${TAO_DIR}/src/examples .

Additional examples are available on our website and in
${TAO_DIR}/src/<unconstrained,bound,..>/examples/tutorials,

where <component> denotes any of the TAO components, such as bound or unconstrained.
The HTML version of the manual pages located at

${TAO_DIR}/docs/manualpages/index.html

or
http://www.mcs.anl.gov/tao/documentation/manualpages/index.html

provides indices (organized by both routine names and concepts) to the tutorial examples.
We suggest the following procedure for writing a new application program using TAO:

1. Install TAO according to the instructions in http://www.mcs.anl.gov/tao/documentation/
index.html.
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2. Copy the examples and makefile from the directory ${TAO_DIR}/examples/, compile
the examples, and run the programs.

3. Select the example program matching the application most closely, and use it as a
starting point for developing a customized code.

2.2 A Simple TAO Example

To help the user start using TAO immediately, we use a simple uniprocessor example. The
code in Figure 2.1 is for minimizing the extended Rosenbrock function f : Rn → R defined
by

f(x) =
m−1∑

i=0

(
α(x2i+1 − x2

2i)
2 + (1− x2i)2

)
,

where n = 2m is the number of variables. The code in Figure 2.1 is only the main program.
We have not included the code for evaluating the function and gradient or for evaluating
the Hessian matrix.

Note that while we use the C language to introduce the TAO software, the package
is also fully usable from C++ and Fortran77/90. Section 5.14 discusses additional issues
concerning Fortran usage.

The code in Figure 2.1 contains many of the components needed to write most TAO
programs and thus, is illustrative of the features present in complex optimization problems.
Note that we have omitted the code required for the routine FormFunctionGradient, which
evaluates the function and gradient, and the code for FormHessian, which evaluates the
Hessian matrix for Rosenbrock’s function. The following sections annotates the lines of
code in Figure 2.1.

2.3 Include Files

The C++ include file for TAO should be used via the statement

#include "tao.h"

The required lower level include files are automatically included within this high-level file.

2.4 TAO Initialization

All TAO programs contain a call to

info = TaoInitialize(int *argc,char ***argv,char *file_name,
char *help_message);

This command initializes TAO (and also MPI and PETSc if these have not yet been initial-
ized elsewhere). The arguments argc and argv are the command line arguments delivered
in all C and C++ programs. The argument file name optionally indicates an alternative
name for an options file, which by default is called .petscrc and resides in the user’s home
directory. See the PETSc users manual for details regarding runtime option specification.

6
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#include "tao.h"
/* -------------- User-defined constructs ---------- */
typedef struct {

int n; /* dimension */
double alpha; /* condition parameter */

} AppCtx;
int FormFunctionGradient(TAO_APPLICATION,Vec,double*,Vec,void*);
int FormHessian(TAO_APPLICATION,Vec,Mat*,Mat*,MatStructure*,void*);

int main(int argc,char **argv)
{

int info; /* used to check for functions returning nonzeros */
double zero=0.0;
Vec x; /* solution vector */
Mat H; /* Hessian matrix */
TAO_SOLVER tao; /* TAO_SOLVER solver context */
TAO_APPLICATION taoapp; /* TAO application context */
AppCtx user; /* user-defined application context */

/* Initialize TAO and PETSc */
PetscInitialize(&argc,&argv,(char *)0,0);
TaoInitialize(&argc,&argv,(char *)0,0);
user.n = 2; user.alpha = 99.0;

/* Allocate vectors for the solution and gradient */
info = VecCreateSeq(PETSC_COMM_SELF,user.n,&x); CHKERRQ(info);
info = MatCreateSeqBDiag(PETSC_COMM_SELF,user.n,user.n,0,2,0,0,&H);CHKERRQ(info);

/* Create TAO solver with desired solution method */
info = TaoCreate(PETSC_COMM_SELF,"tao_lmvm",&tao); CHKERRQ(info);
info = TaoApplicationCreate(PETSC_COMM_SELF,&taoapp); CHKERRQ(info);

/* Set solution vec and an initial guess */
info = VecSet(&zero,x); CHKERRQ(info);
info = TaoAppSetInitialSolutionVec(taoapp,x); CHKERRQ(info);

/* Set routines for function, gradient, hessian evaluation */
info = TaoAppSetObjectiveAndGradientRoutine(taoapp,FormFunctionGradient,(void *)&user);
CHKERRQ(info);
info = TaoAppSetHessianMat(taoapp,H,H); CHKERRQ(info);
info = TaoAppSetHessianRoutine(taoapp,FormHessian,(void *)&user); CHKERRQ(info);

/* SOLVE THE APPLICATION */
info = TaoSolveApplication(taoapp,tao); CHKERRQ(info);

/* Free TAO data structures */
info = TaoDestroy(tao); CHKERRQ(info);
info = TaoAppDestroy(taoapp); CHKERRQ(info);

/* Free PETSc data structures */
info = VecDestroy(x); CHKERRQ(info);
info = MatDestroy(H); CHKERRQ(info);

/* Finalize TAO */
TaoFinalize();
PetscFinalize();
return 0;

}

Figure 2.1: Example of Uniprocessor TAO Code
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The final argument, help message, is an optional character string that will be printed if
the program is run with the -help option.

As illustrated by the TaoInitialize() statement above, TAO routines return an integer
indicating whether an error has occurred during the call. The error code is set to be nonzero
if an error has been detected; otherwise, it is zero. For the C or C++ interface, the error
variable is the routine’s return value, while for the Fortran version, each TAO routine has
as its final argument an integer error variable. Error tracebacks are discussed in Section 2.8.

2.5 TAO Finalization

All TAO programs should call TaoFinalize() as their final (or nearly final) statement
info = TaoFinalize();

This routine handles options to be called at the conclusion of the program, and calls
PetscFinalize() if TaoInitialize() began PETSc. If PETSc was initiated externally
from TAO (by either the user or another software package), the user is responsible for calling
PetscFinalize().

2.6 TAO Solvers

The primary commands for solving an unconstrained optimization problem using TAO are
shown in Figure 2.2.

TaoCreate(MPI_Comm comm, TaoMethod method, TAO_SOLVER *tao);
TaoApplicationCreate(MPI_Comm comm, TAO_APPLICATION *taoapp);
TaoSetInitialSolutionVec(TAO_APPLICATION taoapp, Vec x);
TaoSetObjectiveAndGradientRoutine(TAO_APPLICATION taoapp,

int (*FormFGradient)(TAO_APPLICATION,Vec,double,Vec,void*),void *user);
TaoSetHessianMat(TAO_APPLICATION taoapp, Mat H, Mat Hpre);
TaoSetHessianRoutine(TAO_APPLICATION taoapp,

int (*Hessian)(TAO_APPLICATION, Vec, Mat*, Mat*, MatStructure*, void*),(void *)&user);
TaoSolveApplication(TAO_APPLICATION taoapp, TAO_SOLVER tao);
TaoApplicationDestroy(TAO_APPLICATION taoapp);
TaoDestroy(TAO_SOLVER tao);

Figure 2.2: Commands for solving an unconstrained optimization problem

The user first creates the TAO SOLVER and TAO APPLICATION contexts. He then sets call-back
routines as well as vector (Vec) and matrix (Mat) data structures that the TAO solver will
use for evaluating the minimization function, gradient, and optionally the Hessian matrix.
The user then solves the minimization problem, and finally destroys the TAO SOLVER and
TAO APPLICATION contexts. Details of these commands are presented in Chapter 3.

Note that TaoCreate() enables the user to select the solution method at runtime by
using an options database. Through this database, the user not only can select a mini-
mization method (e.g., limited-memory variable metric, conjugate gradient, Newton with
line search or trust region), but also can prescribe the convergence tolerance, set various
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monitoring routines, indicate techniques for linear systems solves, etc. See Chapter 3 for
more information on the solver methods available in TAO.

2.7 Function Evaluations

Users of TAO are required to provide routines that perform function evaluations. Depending
on the solver chosen, they may also have to write routines that evaluate the gradient vector
and Hessian matrix.

2.8 TAO Programming with PETSc

Include Files

Applications using the PETSc package for vectors, matrices, and linear solvers should in-
clude the appropriate header files. For example

#include "petscksp.h"

includes the appropriate information for most TAO applications using PETSc.

The Options Database

The user can input control data at run time using an options database. The command
PetscOptionsGetInt(PETSC_NULL, "-n", &user.n, &flg);

checks whether the user has provided a command line option to set the value of n, the
number of variables. If so, the variable n is set accordingly; otherwise, n remains unchanged.
A complete description of the options database may be found in the PETSc users manual.

Vectors

In the example in Figure 2.1, the vector data structure (Vec) is used to store the solution
and gradient for TAO unconstrained minimization solvers. A new parallel or sequential
vector x of global dimension M is created with the command

info = VecCreate(MPI_Comm comm,int m,int M,Vec *x);

where comm denotes the MPI communicator. The type of storage for the vector may be
set with either calls to VecSetType() or VecSetFromOptions(). Additional vectors of the
same type can be formed with

info = VecDuplicate(Vec old,Vec *new);

The commands
info = VecSet(Vec X,PetscScalar value);
info = VecSetValues(Vec x,int n,int *indices,

Scalar *values,INSERT_VALUES);

respectively set all the components of a vector to a particular scalar value and assign
a different value to each component. More detailed information about PETSc vectors,
including their basic operations, scattering/gathering, index sets, and distributed arrays,
may be found in the PETSc users manual.
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Matrices

Usage of matrices and vectors is similar. The user can create a new parallel or sequential
matrix H with M global rows and N global columns, with the routine

info = MatCreate(MPI_Comm comm,int m,int n,int M,int N,Mat *H);

where the matrix format can be specified at runtime. The user could alternatively specify
each processes’ number of local rows and columns using m and n. H can then be used to
store the Hessian matrix, as indicated by the above routine TaoSetHessianMat(). Matrix
entries can then be set with the command

info = MatSetValues(Mat H,int m,int *im,int n,int *in,
Scalar *values,INSERT_VALUES);

After all elements have been inserted into the matrix, it must be processed with the pair of
commands

info = MatAssemblyBegin(Mat H,MAT_FINAL_ASSEMBLY);
info = MatAssemblyEnd(Mat H,MAT_FINAL_ASSEMBLY);

The PETSc users manual discusses various matrix formats as well as the details of some
basic matrix manipulation routines.

Parallel Programming

Since TAO uses the message-passing model for parallel programming and employs MPI
for all interprocessor communication, the user is free to employ MPI routines as needed
throughout an application code. However, by default the user is shielded from many of the
details of message passing within TAO, since these are hidden within parallel objects, such
as vectors, matrices, and solvers. In addition, TAO users can interface to external tools,
such as the generalized vector scatters/gathers and distributed arrays within PETSc, to
assist in the management of parallel data.

The user must specify a communicator upon creation of any TAO objects (such as a
vector, matrix, or solver) to indicate the processors over which the object is to be distributed.
For example, some commands for matrix, vector, and solver creation are:

info = MatCreate(MPI_Comm comm,int m,int n,int M,int N,Mat *H);
info = VecCreate(MPI_Comm comm,int m,int M,Vec *x);
info = TaoCreate(MPI_Comm comm,TaoMethod method,TAO_SOLVER *tao);

The creation routines are collective over all processors in the communicator; thus, all pro-
cessors in the communicator must call the creation routine. In addition, if a sequence of
collective routines is being used, the routines must be called in the same order on each
processor.

2.9 Compiling and Running TAO

Compilation of the TAO numerical libraries and TAO application codes requires three envi-
ronmental variables to be set. These three variables, TAO DIR, PETSC ARCH, and PETSC DIR,
are discussed more fully in the TAO installation instructions.

TAO uses a portable makefile system provided by the PETSc [2, 4] library, which is
discussed further in Section 2.11. The TAO library can be compiled with the command
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make

from the TAO DIR directory.
Running a TAO application on a single processor can be done in the usual way by

entering the name of the executable and any command line options. Running programs
in parallel, however, requires use of the MPI library. All TAO programs use the MPI
(Message Passing Interface) standard for message-passing communication [21]. Thus, to
execute TAO programs, users must know the procedure for beginning MPI jobs on their
selected computer system(s). For instance, when using the MPICH implementation of MPI
[12] and many others, the following command initiates a program that uses eight processors:

mpirun -np 8 tao_program_name tao_options

2.10 Error Checking

All TAO commands begin with the Tao prefix and return an integer indicating whether an
error has occurred during the call. The error code equals zero after the successful completion
of the routine and is set to a nonzero value if an error has been detected. The macro
CHKERRQ(info) checks the value of info and calls an error handler upon error detection.
CHKERRQ() should be used in all subroutines to enable a complete error traceback.

In Figure 2.3 we indicate a traceback generated by error detection within a sample
program. The error occurred on line 1007 of the file ${TAO DIR}/src/interface/tao.c
in the routine TaoSetUp() and was caused by nonconforming local lengths of the parallel
gradient and solution vectors, which must be identically partitioned. The TaoSetUp()
routine was called from the TaoSolveApplication() routine, which was in turn called on
line 229 of the main() routine in the program ex2.c. The PETSc users manual provides
further details regarding error checking, including information about the Fortran interface.

[ember] mpirun -np 2 ex2 -tao_lmvm

[0]PETSC ERROR: TaoSetUp() line 1007 in src/interface/tao.c

[0]PETSC ERROR: Nonconforming object sizes!

[0]PETSC ERROR: Gradient and solution vectors must be identically partitioned!

[0]PETSC ERROR: TaoSolveApplication() line 1739 in src/interface/tao.c

[0]PETSC ERROR: main() line 229 in src/unconstrained/examples/tutorials/ex2.c

[0] MPI Abort by user Aborting program !

[0] Aborting program!

p0_911: p4_error: : 1

bm_list_912: p4_error: interrupt SIGINT: 2

Figure 2.3: Example of Error Traceback

When running the debugging version of the TAO software (PETSc configured with the
--with-debugging option), checking is performed for memory corruption (writing outside
of array bounds, etc). The macros CHKMEMQ and CHKMEMA can be called anywhere in the code
to check the current status of the memory for corruption. By putting several (or many) of
these macros into an application code, one can usually track down the code segment where
corruption has occurred.
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2.11 Makefiles

To manage code portability across a wide variety of UNIX systems, TAO uses a makefile
system that is part of the PETSc software. This section briefly discusses makefile usage
from the perspective of application programmers; see the “makefiles” chapter of the PETSc
users manual for additional details.

Compiling TAO Programs

To make a program named rosenbrock1, one may use the command
make PETSC_ARCH=arch rosenbrock1

which compiles a debugging or optimized version of the example and automatically link the
appropriate libraries. The architecture, arch, is one of solaris, rs6000, IRIX, hpux,
etc. Note that when using command line options with make (as illustrated above), one
must not place spaces on either side of the “=” signs. The variable PETSC ARCH can also be
set as an environmental variable.

Sample Makefiles

CFLAGS =

FFLAGS =

CPPFLAGS =

FPPFLAGS =

include ${TAO_DIR}/bmake/tao_common

rosenbrock1: rosenbrock1.o tao_chkopts

-${CLINKER} -o rosenbrock1 rosenbrock1.o ${TAO_LIB} ${PETSC_SNES_LIB}

${RM} rosenbrock1.o

Figure 2.4: Sample TAO Makefile for a Single Program

Maintaining portable TAO makefiles is very simple. Figure 2.4 presents a minimal
makefile for maintaining a single program that uses the TAO library. The most important
line in this makefile is the line starting with include:

include ${TAO_DIR}/bmake/tao_common

This line includes other makefiles that provide the needed definitions and rules for the
particular base software installations (specified by ${TAO DIR} and ${PETSC DIR}) and ar-
chitecture (specified by ${PETSC ARCH}), which are typically set as environmental variables
prior to compiling TAO source or programs. As listed in the sample makefile, the ap-
propriate include file is automatically completely specified; the user should not alter this
statement within the makefile.

Note that the variable ${TAO LIB} (as listed on the link line in this makefile) specifies all
of the various TAO and supplementary libraries in the appropriate order for correct linking.

Some additional variables that can be used in the makefile are defined as follows:

• CFLAGS, FFLAGS - user-specified additional options for the C++ compiler and fortran
compiler.
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• CPPFLAGS, FPPFLAGS - user-specified additional flags for the C++ preprocessor and
fortran preprocesor.

• CLINKER, FLINKER - the C++ and Fortran linkers.

• RM - the remove command for deleting files.

• TAO LIB - all of the base TAO libraries and required supplementary libraries.

• TAO FORTRAN LIB - the TAO Fortran interface library.

• PETSC FORTRAN LIB - the PETSc Fortran interface library.

2.12 Directory Structure

The home directory of TAO contains the following subdirectories:

• docs - All documentation for TAO. The files tao manual.ps and manual/manual.html
contain the users manual in PDF and HTML formats, respectively. Includes the sub-
directory

- manualpages (manual pages for individual TAO routines).

• bmake - Base TAO makefile directory.

• include - All include files for TAO that are visible to the user.

• examples - Example problems and makefile.

• src - The source code for all TAO components, which currently includes

– unconstrained - unconstrained minimization,
– bound - bound constrained minimization.
– complementarity - mixed complementarity solvers.
– least squares - nonlinear least squares,

Each TAO source code component directory has the following subdirectories:

• examples - Example programs for the component, including

– tutorials - Programs designed to teach users about TAO. These codes can serve
as templates for the design of custom applicatinos.

– tests - Programs designed for thorough testing of TAO. As such, these codes
are not intended for examination by users.

• interface - The calling sequences for the abstract interface to the component. Code
here does not know about particular implementations.

• impls - Source code for one or more implementations.

• utils - Utility routines. Source here may know about the implementations, but
ideally will not know about implementations for other components.
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Chapter 3

Basic Usage of TAO Solvers

TAO contains unconstrained minimization, bound constrained minimization, and nonlinear
complementarity solvers. The structure of these problems can differ significantly, but TAO
has a similar interface to all of its solvers. Routines that most solvers have in common will
be discussed in this chapter. A complete list of options can be found by consulting the
manual pages. Many of the options can also be set at the command line. These options
can also be found in manual pages or by running a program with the -help option.

3.1 Initialize and Finalize

The first TAO routine in any application should be TaoInitialize(). Most TAO programs
begin with a call to

info = TaoInitialize(int *argc,char ***argv,char *file_name,
char *help_message);

This command initializes TAO, as well as MPI, PETSc, and other packages to which TAO
applications may link (if these have not yet been initialized elsewhere). In particular, the
arguments argc and argv are the command line arguments delivered in all C and C++ pro-
grams; these arguments initialize the options database. The argument file name optionally
indicates an alternative name for an options file, which by default is called .petscrc and
resides in the user’s home directory.

One of the last routines that all TAO programs should call is

info = TaoFinalize();

This routine finalizes TAO and any other libraries that may have been initialized dur-
ing the TaoInitialize() phase. For example, TaoFinalize() calls MPI Finalize() if
TaoInitialize() began MPI. If MPI was initiated externally from TAO (by either the
user or another software package), then the user is responsible for calling MPI Finalize().

3.2 Creation and Destruction

A TAO solver can be created with the command

info = TaoCreate(MPI_Comm comm,TaoMethod method,TAO_SOLVER *newsolver);
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The first argument in this routine is an MPI communicator indicating which processes are
involved in the solution process. In most cases, this should be set to MPI COMM WORLD. The
second argument in this creation routine specifies the default method that should be be
used to solve the optimization problem. The third argument in TaoCreate() is a pointer
to a TAO solver object. This routine creates the object and returns it to the user. The
TAO object is then to be used in all TAO routines.

The various types of TAO solvers and the flags that identify them will be discussed in
the following chapters. The solution method should be carefully chosen depending upon
the problem that is being solved. Some solvers, for instance, are meant for problems with
no constraints, while other solvers acknowledge constraints in the problem and solve them
accordingly. The user must also be aware of the derivative information that is available.
Some solvers require second-order information, while other solvers require only gradient
or function information. The TaoMethod can also be set to TAO NULL in the TaoCreate()
routine if the user selects a method at runtime using the options database. The command
line option -tao method followed by an TAO method will override any method specified by
the second argument. The command line option -tao method tao lmvm, for instance, will
specify the limited memory variable metric method for unconstrained optimization. Note
that the TaoMethod variable is a string that requires quotation marks in an application
program, but quotation marks are not required at the command line. The method that
TAO uses to solve an optimization problem can be changed at a later point in the program
with the command TaoSetMethod(), whose arguments are a TAO solver and a string that
uniquely identifies a method for solving the problem.

Each TAO solver that has been created should also be destroyed using the command
info = TaoDestroy(TAO_SOLVER solver);

This routine frees the internal data structures used by the solver.

3.3 Convergence

Although TAO and its solvers set default parameters that are useful for many problems,
it may be necessary for the user to modify these parameters to change the behavior and
convergence of various algorithms.

One convergence criterion for most algorithms concerns the of digits of accuracy needed
in the solution. In particular, one convergence test employed by TAO attempts to stop
when the error in the constraints is less than εcrtol, and either

|f(X)− f(X∗)|
|f(X)|+ 1

≤ εfrtol or f(X)− f(X∗) ≤ εfatol,

where X∗ is the current approximation to X. TAO estimates f(X) − f(X∗) with ei-
ther the square of the norm of the gradient or the duality gap. A relative tolerance
of εfrtol = 0.01 indicates that two significant digits are desired in the objective func-
tion. Each solver sets its own convergence tolerances, but they can be changed using
the routine TaoSetTolerances() . Another set of convergence tolerances can be set with
TaoSetGradientTolerances(). These tolerances terminate the solver when the norm of the
gradient function (or Lagrangian function for bound-constrained problems) is sufficiently
close to zero.
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Other stopping criteria include a minimum trust region radius or a maximum number of
iterations. These parameters can be set with the routines TaoSetTrustRegionTolerance()
and TaoSetMaximumIterates(). Similarly, a maximum number of function evaluations can
be set with the command TaoSetMaximumFunctionEvaluations() .

3.4 Viewing Solutions

The routine

int TaoSolveApplication(TAO_APPLICATION, TAO_SOLVER);

will apply the solver to the application that has been created by the user.
To see parameters and performance statistics for the solver, the routine

int TaoView(TAO_SOLVER);

can be used. This routine will display to standard output the number of function evaluations
need by the solver and other information specific to the solver.

The progress of the optimization solver can be monitored with the runtime option
-tao monitor. Although monitoring routines can be customized, the default monitoring
routine will print out several relevant statistics to the screen.

The user also has access to information about the current solution. The current iteration
number, objective function value, gradient norm, infeasibility norm, and step length can be
retrieved with the command

int TaoGetSolutionStatus(TAO_SOLVER tao, int* iterate, double* f,
double* gnorm, double *cnorm, double *xdiff,
TaoTerminateReason *reason)

The last argument returns a code that indicates the reason that the solver terminated.
Positive numbers indicate that a solution has been found, while negative numbers indicate a
failure. A list of reasons can be found in the manual page for TaoGetTerminationReason().

The user set vectors containing the solution and gradient before solving the problem,
but pointers to these vectors can also be retrieved with the commands TaoGetSolution()
and TaoGetGradient(). Dual variables and other relevant information are also available.
This information can be obtained during user-defined routines such as a function evaluation
and customized monitoring routine, or after the solver has terminated.
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Chapter 4

TAO Solvers

4.1 Unconstrained Minimization

Unconstrained minimization is used to minimize a function of many variables without any
constraints on the variables, such as bounds. The methods available in TAO for solving
these problems can be classified according to the amount of derivative information required:

1. Function evaluation only – Nelder-Mead method (tao nm)

2. Function and gradient evaluations – limited-memory, variable-metric method (tao lmvm)
and nonlinear conjugate gradient method (tao cg)

3. Function, gradient, and Hessian evaluations – Newton line-search method (tao nls)
and Newton trust-region method (tao ntr)

The best method to use depends on the particular problem being solved and the accuracy
required in the solution. If a Hessian evaluation routine is available, then the Newton
line-search and Newton trust-region methods will be the best performers. When a Hessian
evaluation routine is not available, then the limited-memory, variable-metric method is
likely to perform best. The Nelder-Mead method should be used only as a last resort when
no gradient information is available.

Each solver has a set of options associated with it that can be set with command line
arguments. A brief description of these algorithms and the associated options are discussed
in this chapter.

4.1.1 Nelder-Mead

The Nelder-Mead algorithm [24] is a direct search method for finding a local minimum of
a function f(x). This algorithm does not require any gradient or Hessian information of
f , and therefore has some expected advantages and disadvantages compared to the other
TAO solvers. The obvious advantage is that it is easier to write an application when no
derivatives need to be calculated. The downside is that this algorithm can be very slow to
converge or can even stagnate, and performs poorly for large numbers of variables.

This solver keeps a set of N + 1 sorted vectors x1, x2, . . . , xN+1 and their corresponding
objective function values f1 ≤ f2 ≤ . . . ≤ fN+1. At each iteration, xN+1 is removed from
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the set and replaced with

x(µ) = (1 + µ)
1
N

N∑

i=1

xi − µxN+1,

where µ can be one of µ0, 2µ0,
1
2µ0,−1

2µ0 depending upon the values of each possible
f(x(µ)).

The algorithm terminates when the residual fN+1 − f1 becomes sufficiently small. Be-
cause of the way new vectors can be added to the sorted set, the minimum function value
and/or the residual may not be impacted at each iteration.

There are two options that can be set specifically for the Nelder-Mead algorithm,
-tao nm lamda <value> sets the initial set of vectors (x0 plus value in each cartesion
direction), the default value is 1. tao nm mu <value> sets the value of µ0, the default is
µ0 = 1.

4.1.2 Limited-Memory, Variable-Metric Method

The limited-memory, variable-metric method solves the system of equations

Hkdk = −∇f(xk),

where Hk is a positive definite approximation to the Hessian matrix obtained by using the
BFGS update formula with a limited number of previous iterates and gradient evaluations.
The inverse of Hk can readily be applied to obtain the direction dk. Having obtained
the direction, a Moré-Thuente line search is applied to compute a step length, τk, that
approximately solves the one-dimensional optimization problem

min
τ

f(xk + τdk).

The current iterate and Hessian approximation are updated and the process is repeated until
the method converges. This algorithm is the default unconstrained minimization solver and
can be selected using the TaoMethod tao lmvm. For best efficiency, function and gradient
evaluations should be performed simultaneously when using this algorithm.

The primary factors determining the behavior of this algorithm are the number of vec-
tors stored for the Hessian approximation and the scaling matrix used when computing
the direction. The number of vectors stored can be set with the command line argument
-tao lmm vectors <int>; 5 is the default value. Increasing the number of vectors results
in a better Hessian approximation and can decrease the number of iterations required to
compute a solution to the optimization problem. However, as the number of vectors in-
creases, more memory is consumed and each direction calculation takes longer to compute.
Therefore, a trade off must be made between the quality of the Hessian approximation, the
memory requirements, and the time to compute the direction.

During the computation of the direction, the inverse of an initial Hessian approxima-
tion H0,k is applied. The choice of H0,k has a significant impact on the quality of the
direction obtained and can result in a decrease in the number of function and gradient
evaluations required to solve the optimization problem. However, the calculation of H0,k
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at each iteration can have a significant impact on the time required to update the limited-
memory BFGS approximation and the cost of obtaining the direction. By default, H0,k is
a diagonal matrix obtained from the diagonal entries of a Broyden approximation to the
Hessian matrix. The calculation of H0,k can be modified with the command line argument
-tao lmm scale type <none,scalar,broyden>. Each scaling method is described below.
The scalar and broyden techniques are inspired by [?].

none This scaling method uses the identity matrix as H0,k. No extra computations are
required when obtaining the search direction or updating the Hessian approximation.
However, the number of functions and gradient evaluations required to converge to a
solution is typically much larger than the number required when using other scaling
methods.

scalar This scaling method uses a multiple of the identity matrix as H0,k. The scalar value
σ is chosen by solving the one-dimensional optimization problem

min
σ
‖σαY − σα−1S‖2

F ,

where α ∈ [0, 1] is given, and S and Y are the matrices of past iterate and gradient
information required by the limited-memory BFGS update formula. The optimal value
for σ can be written down explicitly. This choice of σ attempts to satisfy the secant
equation σY = S. Since this equation cannot typically be satisfied by a scalar, a least
norm solution is computed. The amount of past iterate and gradient information used
is set by the command line argument tao lmm scalar history <int>, which must
be less than or equal to the number of vectors kept for the BFGS approximation.
The default value is 5. The choice for α is made with the command line argument
tao lmm scalar alpha <double>; 1 is the default value. This scaling method offers
a good compromise between no scaling and broyden scaling.

broyden This scaling method uses a positive-definite diagonal matrix obtained from the
diagonal entries of the Broyden approximation to the Hessian for the scaling matrix.
The Broyden approximation is a family of approximations parametrized by a constant
φ; φ = 0 gives the BFGS formula and φ = 1 gives the DFP formula. The value of φ is
set with the command line argument -tao lmm broyden phi <double>. The default
value for φ is 0.125. This scaling method requires the most computational effort of
available choices, but typically results in a significant reduction in the number of
function and gradient evaluations taken to compute a solution.

An additional rescaling of the diagonal matrix can be applied to further improve per-
formance when using the broyden scaling method. The rescaling method can be set with
the command line argument -tao lmm rescale type <none,scalar,gl>; scalar is the
default rescaling method. The rescaling method applied can have a large impact on the
number of function and gradient evaluations necessary to compute a solution to the op-
timization problem, but increases the time required to update the BFGS approximation.
Each rescaling method is described below. These techniques are inspired by [?].

none This rescaling method does not modify the diagonal scaling matrix.
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scalar This rescaling method chooses a scalar value σ by solving the one-dimensional
optimization problem

min
σ
‖σαHβ

0,kY − σα−1Hβ−1
0,k S‖2

F ,

where α ∈ [0, 1] and β ∈ [0, 1] are given, H0,k is the positive-definite diagonal scaling
matrix computed by using the Broyden update, and S and Y are the matrices of past
iterate and gradient information required by the limited-memory BFGS update for-
mula. This choice of σ attempts to satisfy the secant equation σH0,kY = S. Since this
equation cannot typically be satisfied by a scalar, a least norm solution is computed.
The scaling matrix used is then σH0,k. The amount of past iterate and gradient infor-
mation used is set by the command line argument tao lmm rescale history <int>,
which must be less than or equal to the number of vectors kept for the BFGS approx-
imation. The default value is 5. The choice for α is made with the command line
argument tao lmm rescale alpha <double>; 1 is the default value. The choice for
β is made with the command line argument tao lmm rescale beta <double>; 0.5 is
the default value.

gl This scaling method is the same as the scalar rescaling method, but the previous value
for the scaling matrix H0,k−1 is used when computing σ. This is the rescaling method
suggested in [?].

Finally, a limit can be placed on the difference between the scaling matrix computed at
this iteration and the previous value for the scaling matrix. The limiting type can be set with
the command line argument -tao lmm limit type <none,average,relative,absolute>;
none is the default value. Each of these methods is described below when using the scalar
scaling method. The techniques are the same when using the broyden scaling method, but
are applied to each entry in the diagonal matrix.

none Set σk = σ, where σ is the value computed by the scaling method.

average Set σk = µσ +(1−µ)σk−1, where σ is the value computed by the scaling method,
σk−1 is the previous value, and µ ∈ [0, 1] is given.

relative Set σk = median {(1− µ)σk−1, σ, (1 + µ)σk−1}, where σ is the value computed
by the scaling method, σk−1 is the previous value, and µ ∈ [0, 1] is given.

absolute Set σk = median {σk−1 − ν, σ, σk−1 + ν}, where σ is the value computed by the
scaling method, σk−1 is the previous value, and ν is given.

The value for µ is set with the command line argument -tao lmm limit mu <double>; 1 is
the default value. The value for ν is set with the command line argument -tao lmm limit nu
<double>. The default value is 100.

The default values for the scaling are based on many tests using the unconstrained
problems from the MINPACK-2 test set. These tests were used to narrow the choices to
a few sets of values. These values were then run on the unconstrained problems from the
CUTEr test set to obtain the default values supplied.

22



Table 4.1: Summary of lmvm options
Name Value Default Description
-tao lmm vectors int 5 Number of vectors for Hessian

approximation
-tao lmm scale type none, scalar, broyden broyden Type of scaling method to use
-tao lmm scalar history int 5 Number of vectors to use when

scaling
-tao lmm scalar alpha double 1 Value of α for scalar scaling

method
-tao lmm broyden phi double 0.125 Value of α for scalar scaling

method
-tao lmm rescale type none, scalar, gl scalar Type of rescaling method to

use
-tao lmm rescale history int 5 Number of vectors to use when

rescaling
-tao lmm rescale alpha double 1 Value of α for rescaling

method
-tao lmm rescale beta double 0.5 Value of β for rescaling

method
-tao lmm limit type none, average, relative,

absolute
none Type of limit to impose on

scaling matrix
-tao lmm limit mu double 1 Value of µ for limit type
-tao lmm limit nu double 100 Value of ν for limit type

4.1.3 Nonlinear Conjugate Gradient Method

The nonlinear conjugate gradient method can be viewed as an extensions of the conjugate
gradient method for solving symmetric, positive-definite linear systems of equations. This
algorithm requires only function and gradient evaluations as well as a line search. The TAO
implementation uses a Moré-Thuente line search to obtain the step length. The nonlinear
conjugate gradient method can be selected by using the TaoMethod tao cg. For the best
efficiency, function and gradient evaluations should be performed simultaneously when using
this algorithm.

Five variations are currently supported by the TAO implementation: the Fletcher-
Reeves method, the Polak-Ribiére method, the Polak-Ribiére-Plus method[25], the Hestenes-
Stiefel method, and the Dai-Yuan method. These conjugate gradient methods can be spec-
ified by using the command line argument tao cg type <fr,pr,prp,hs,dy>, respectively.
The default value is prp.

The conjugate gradient method incorporates automatic restarts when successive gradi-
ents are not sufficiently orthogonal. TAO measures the orthogonality by dividing the inner
product of the gradient at the current point and the gradient at the previous point by the
square of the Euclidean norm of the gradient at the current point. When the absolute value
of this ratio is greater than η, the algorithm restarts using the gradient direction. The
parameter η can be set using the command line argument -tao cg eta <double>; 0.1 is
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the default value.

4.1.4 Newton Line-Search Method

The Newton line-search method solves the symmetric system of equations

Hkdk = −gk

to obtain a step dk, where Hk is the Hessian of the objective function at xk and gk is
the gradient of the objective function at xk. For problems where the Hessian matrix is
indefinite, the perturbed system of equations

(Hk + ρkI)dk = −gk

is solved to obtain the direction, where ρk is a positive constant. If the direction computed
is not a descent direction, the (scaled) steepest descent direction is used instead. Having
obtained the direction, a Moré-Thuente line search is applied to obtain a step length, τk,
that approximately solves the one-dimensional optimization problem

min
τ

f(xk + τdk).

The Newton line-search method can be set using the TaoMethod tao nls. For the best
efficiency, function and gradient evaluations should be performed simultaneously when using
this algorithm.

The system of equations is approximately solved by applying the conjugate gradient
method, Steihaug-Toint conjugate gradient method, generalized Lanczos method, or an
alternative Krylov subspace method supplied by PETSc. The method used to solve the
systems of equations is specified with the command line argument -tao nls ksp type
<cg,stcg,gltr,petsc>; cg is the default. When the type is set to petsc, the method set
with the PETSc -ksp type command line argument is used. For example, to use GMRES as
the linear system solver, one would use the the command line arguments -tao nls ksp type
petsc -ksp type gmres. Internally, the PETSc implementations for the conjugate gradi-
ent methods and the generalized Lanczos method are used. See the PETSc manual for
further information on changing the behavior of the linear system solvers.

A good preconditioner reduces the number of iterations required to solve the linear
system of equations. For the conjugate gradient methods and generalized Lanczos method,
this preconditioner must be symmetric and positive definite. The available options are to
use no preconditioner, the absolute value of the diagonal of the Hessian matrix, a limited-
memory BFGS approximation to the Hessian matrix, or one of the other preconditioners
provided by the PETSc package. These preconditioners are specified by the command line
argument -tao nls pc type <none,ahess,bfgs,petsc>, respectively. The default is the
bfgs preconditioner. When the preconditioner type is set to petsc, the preconditioner
set with the PETSc -pc type command line argument is used. For example, to use an
incomplete Cholesky factorization for the preconditioner, one would use the command line
arguments -tao nls pc type petsc -pc type icc. See the PETSc manual for further
information on changing the behavior of the preconditioners.
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The choice of scaling matrix can have a significant impact on the quality of the Hessian
approximation when using the bfgs preconditioner and affect the number of iterations
required by the linear system solver. The choices for scaling matrices are the same as
those discussed for the limited-memory, variable-metric algorithm. For Newton methods,
however, the option exists to use a scaling matrix based on the true Hessian matrix. In
particular, the implementation supports using the absolute value of the diagonal of the
Hessian matrix or the absolute value of the diagonal of the perturbed Hessian matrix. The
scaling matrix to use with the bfgs preconditioner is set with the command line argument
-tao nls bfgs scale type <bfgs,ahess,phess>; phess is the default. The bfgs scaling
matrix is derived from the BFGS options. The ahess scaling matrix is the absolute value
of the diagonal of the Hessian matrix. The phess scaling matrix is the absolute value of
the diagonal of the perturbed Hessian matrix.

The perturbation ρk is added when the direction returned by the Krylov subspace
method is either not a descent direction, the Krylov method diverged due to an indefi-
nite preconditioner or matrix, or a direction of negative curvature was found. In the two
latter cases, if the step returned is a descent direction, it is used during the line search.
Otherwise, a steepest descent direction is used during the line search. The perturbation is
decreased as long as the Krylov subspace method reports success and increased if further
problems are encountered. There are three cases: initializing, increasing, and decreasing
the perturbation. These cases are described below.

1. If ρk is zero and a problem was detected with either the direction on the Krylov
subspace method, the perturbation is initialized to

ρk+1 = median {imin, imfac ∗ ‖g(xk)‖, imax} ,

where imin is set with the command line argument -tao nls imin <double> with
a default value of 10−4, imfac by -tao nls imfac with a default value of 0.1, and
imax by -tao nls imax with a default value of 100. When using the gltr method
to solve the system of equations, an estimate of the minimum eigenvalue λ1 of the
Hessian matrix is available. This value is use to initialize the perturbation to ρk+1 =
max {ρk+1,−λ1}.

2. If ρk is nonzero and a problem was detected with either the direction or Krylov
subspace method, the perturbation is increased to

ρk+1 = min {pmax, max {pgfac ∗ ρk,pmgfac ∗ ‖g(xk)‖}} ,

where pgfac is set with the command line argument -tao nls pgfac with a default
value of 10, pmgfac by -tao nls pmgfac with a default value of 0.1, and pmax by
-tao nls pmax with a default value of 100.

3. If ρk is nonzero and no problems were detected with either the direction or Krylov
subspace method, the perturbation is decreased to

ρk+1 = min {psfac ∗ ρk,pmsfac ∗ ‖g(xk)‖} ,

where psfac is set with the command line argument -tao nls psfac with a default
value of 0.4, and pmsfac by -tao nls pmsfac with a default value of 0.1. Moreover,
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if ρk+1 < pmin then ρk+1 = 0, where pmin is set with the command line argument
-tao nls pmin and has a default value of 10−12.

When using stcg or gltr to solve the linear systems of equation, a trust-region radius
need to be initialized and updated. This trust-region radius limits the size of the step
computed. The method for initializing the trust-region radius is set with the command line
argument -tao nls init type <constant,direction,interpolation>; interpolation,
which chooses an initial value based on the interpolation scheme found in [5], is the default.
This scheme performs a number of function and gradient evaluations to determine a radius
such that the reduction predicted by the quadratic model along the gradient direction
coincides with the actual reduction in the nonlinear function. The iterate obtaining the
best objective function value is used as the starting point for the main line-search algorithm.
The constant method initializes the trust-region radius by using the value specified with
the -tao trust0 <double> command line argument, where the default value is 100. The
direction technique solves the first quadratic optimization problem by using a standard
conjugate gradient method and initializes the trust-region to ‖s0‖.

Finally, the method for updating the trust-region radius is set with the command line
argument -tao nls update type <step,reduction,interpolation>; step is the default.
The step method updates the trust-region radius based on the value of τk. In particular,

∆k+1 =





ω1min(∆k, ‖dk‖) if τk ∈ [0, ν1)
ω2min(∆k, ‖dk‖) if τk ∈ [ν1, ν2)
ω3∆k if τk ∈ [ν2, ν3)
max(∆k, ω4‖dk‖) if τk ∈ [ν3, ν4)
max(∆k, ω5‖dk‖) if τk ∈ [ν4,∞)

where 0 < ω1 < ω2 < ω3 = 1 < ω4 < ω5 and 0 < ν1 < ν2 < ν3 < ν4 are constants. The
reduction method computes the ratio of the actual reduction in the objective function to
the reduction predicted by the quadratic model for the full step, κk = f(xk)−f(xk+dk)

q(xk)−q(xk+dk) , where
qk is the quadratic model. The radius is then updated as:

∆k+1 =





α1min(∆k, ‖dk‖) if κk ∈ (−∞, η1)
α2min(∆k, ‖dk‖) if κk ∈ [η1, η2)
α3∆k if κk ∈ [η2, η3)
max(∆k, α4‖dk‖) if κk ∈ [η3, η4)
max(∆k, α5‖dk‖) if κk ∈ [η4,∞)

where 0 < α1 < α2 < α3 = 1 < α4 < α5 and 0 < η1 < η2 < η3 < η4 are constants. The
interpolation method uses the same interpolation mechanism as in the initialization to
compute a new value for the trust-region radius.

4.1.5 Newton Trust-Region Method

The Newton trust-region method solves the constrained quadratic programming problem

mind
1
2dT Hkd + gT

k d
subject to ‖d‖ ≤ ∆k
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to obtain a direction dk, where Hk is the Hessian of the objective function at xk, gk is
the gradient of the objective function at xk and ∆k is the trust-region radius. If xk + dk

sufficiently reduces the nonlinear objective function, then the step is accepted and the trust-
region radius is updated. However, if xk + dk does not sufficiently reduce the nonlinear
objective function, then the step is rejected, the trust-region radius is reduced, and the
quadratic program is re-solved using the updated trust-region radius. The Newton trust-
region method can be set using TaoMethod tao ntr. For the best efficiency, function and
gradient evaluations should be performed separately when using this algorithm.

The quadratic optimization problem is approximately solved by applying the Steihaug-
Toint conjugate gradient method or generalized Lanczos method to the symmetric system
of equations Hkd = −gk. The method used to solve the system of equations is specified
with the command line argument -tao ntr ksp type <stcg,gltr>; stcg is the default.
Internally, the PETSc implementations for the Steihaug-Toint method and the generalized
Lanczos method are used. See the PETSc manual for further information on changing the
behavior of these linear system solvers.

A good preconditioner reduces the number of iterations required to compute the direc-
tion. For the Steihaug-Toint conjugate gradient method and generalized Lanczos method,
this preconditioner must be symmetric and positive definite. The available options are to
use no preconditioner, the absolute value of the diagonal of the Hessian matrix, a limited-
memory BFGS approximation to the Hessian matrix, or one of the other preconditioners
provided by the PETSc package. These preconditioners are specified by the the command
line argument -tao ntr pc type <none,ahess,bfgs,petsc>, respectively. The default is
the bfgs preconditioner. When the preconditioner type is set the to petsc, the precon-
ditioner set with the PETSc -pc type command line argument is used. For example, to
use an incomplete Cholesky factorization for the preconditioner, one would use the com-
mand line arguments -tao ntr pc type petsc -pc type icc. See the PETSc manual for
further information on changing the behavior of the preconditioners.

The choice of scaling matrix can have a significant impact on the quality of the Hessian
approximation when using the bfgs preconditioner and affect the number of iterations
required by the linear system solver. The choices for scaling matrices are the same as
those discussed for the limited-memory, variable-metric algorithm. For Newton methods,
however, the option exists to use a scaling matrix based on the true Hessian matrix. In
particular, the implementation supports using the absolute value of the diagonal of the
Hessian matrix. The scaling matrix to use with the bfgs preconditioner is set with the
command line argument -tao ntr bfgs scale type <ahess,bfgs>; ahess is the default.
The bfgs scaling matrix is derived from the BFGS options. The ahess scaling matrix is
the absolute value of the diagonal of the Hessian matrix.

The method for computing an initial trust-region radius is set with the command line
argument -tao ntr init type <constant,direction,interpolation>; interpolation,
which chooses an initial value based on the interpolation scheme found in [5], is the default.
This scheme performs a number of function and gradient evaluations to determine a radius
such that the reduction predicted by the quadratic model along the gradient direction
coincides with the actual reduction in the nonlinear function. The iterate obtaining the
best objective function value is used as the starting point for the main line-search algorithm.
The constant method initializes the trust-region radius by using the value specified with
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the -tao trust0 <double> command line argument, where the default value is 100. The
direction technique solves the first quadratic optimization problem by using a standard
conjugate gradient method and initializes the trust-region to ‖s0‖.

Finally, the method for updating the trust-region radius is set with the command line
argument -tao ntr update type <reduction,interpolation>; reduction is the default.
The reduction method computes the ratio of the actual reduction in the objective function
to the reduction predicted by the quadratic model for the full step, κk = f(xk)−f(xk+dk)

q(xk)−q(xk+dk) ,
where qk is the quadratic model. The radius is then updated as:

∆k+1 =





α1min(∆k, ‖dk‖) if κk ∈ (−∞, η1)
α2min(∆k, ‖dk‖) if κk ∈ [η1, η2)
α3∆k if κk ∈ [η2, η3)
max(∆k, α4‖dk‖) if κk ∈ [η3, η4)
max(∆k, α5‖dk‖) if κk ∈ [η4,∞)

where 0 < α1 < α2 < α3 = 1 < α4 < α5 and 0 < η1 < η2 < η3 < η4 are constants. The
interpolation method uses the same interpolation mechanism as in the initialization to
compute a new value for the trust-region radius.

4.2 Bound Constrained Optimization

Bound constrained optimization algorithms minimize f : Rn → R, subject to upper or
lower bounds on some of the variables. These solvers also bounds on the variables as well
as objective function, gradient, and possibly Hessian information.

4.2.1 Newton Trust Region

The TRON [18] algorithm is an active set method that uses a combination of gradient pro-
jections and a preconditioned conjugate gradient method to minimize an objective function.
Each iteration of the TRON algorithm requires function, gradient, and Hessian evaluations.
In each iteration, the algorithm first applies several conjugate gradients. After these it-
erates, the TRON solver momentarily ignores the variables that equal one of its bounds
and applies a preconditioned conjugate gradient method to a quadratic model of the free
variables.

The TRON algorithm solves a reduced linear system defined by the rows and columns
corresponding to the variables that lie between the upper and lower bounds. When running
in parallel, these rows can either remain on their current processor or be redistributed evenly
over all of the processors with the command TaoSelectSubset(). The TRON algorithm
applies a trust region to the conjugate gradients to ensure convergence. The initial trust
region can be set using the command TaoSetTrustRegionRadius() and the current trust
region size can be found using the command TaoGetTrustRegionRadius(). The initial
trust region can significantly alter the rate of convergence for the algorithm and should be
tuned and adjusted for optimal performance.
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4.2.2 Gradient Projection–Conjugate Gradient Method

The GPCG [20] algorithm is much like the TRON algorithm, discussed in Section 4.2.1,
except that it assumes that the objective function is quadratic and convex. Therefore,
it evaluates the function, gradient, and Hessian only once. Since the objective function
is quadratic, the algorithm does not use a trust region. All of the options that apply to
TRON, except for trust region options, also apply to GPCG.

4.2.3 Interior Point Newton Algorithm

The BQPIP algorithm is an interior point algorithm for bound constrained quadratic opti-
mization. It can be set using the TaoMethod of tao bqpip. Since it assumes the objective
function is quadratic, it evaluates the function, gradient, and Hessian only once. In this
algorithm all of the variables are free variables. This method also requires the solution of
systems of linear equations, whose solver can be accessed and modified with the command
TaoGetLinearSolver().

4.2.4 Limited Memory Variable Metric Method

This method is the bound constrained variant of the LMVM method for unconstrained
optimization. It uses projected gradients to approximate the Hessian – eliminating the
need for Hessian evaluations. The method can be set using TaoMethod tao blmvm. The
command TaoLMVMSetSize(), which sets the number of vectors to be used in the Hessian
approximation, also applies to this method.

4.2.5 KT Method

This method calculates points satisfying the first-order necessary optimality conditions.
The method uses the mixed complementarity problem solvers from Section 4.3 to calculate
the solutions. The choice of complementarity solver is specified with the runtime option
-tao kt method with the default being the tao ssils method.

4.3 Complementarity

Mixed complementarity problems, or box-constrained variational inequalities, are related to
nonlinear systems of equations. They are defined by a continuously differentiable function,
F : Rn → Rn, and bounds, ` ∈ {R ∪ {−∞}}n and u ∈ {R ∪ {∞}}n, on the variables such
that ` ≤ u. Given this information, x∗ ∈ [`, u] is a solution to MCP(F , `, u) if for each
i ∈ {1, . . . , n} we have at least one of the following:

Fi(x∗) ≥ 0 if x∗i = `i

Fi(x∗) = 0 if `i < x∗i < ui

Fi(x∗) ≤ 0 if x∗i = ui.

Note that when ` = {−∞}n and u = {∞}n we have a nonlinear system of equations, and
` = {0}n and u = {∞}n corresponds to the nonlinear complementarity problem [6].
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Simple complementarity conditions arise from the first-order optimality conditions from
optimization [16, 17]. In the simple bound constrained optimization case, these conditions
correspond to MCP(∇f , `, u), where f : Rn → R is the objective function. In a one-
dimensional setting these conditions are intuitive. If the solution is at the lower bound,
then the function must be increasing and ∇f ≥ 0. However, if the solution is at the upper
bound, then the function must be decreasing and ∇f ≤ 0. Finally, if the solution is strictly
between the bounds, we must be at a stationary point and ∇f = 0. Other complementarity
problems arise in economics and engineering [9], game theory [23], and finance [14].

Evaluation routines for F and its Jacobian must be supplied prior to solving the appli-
cation. The bounds, [`, u], on the variables must also be provided. If no starting point is
supplied, a default starting point of all zeros is used.

4.3.1 Semismooth Methods

TAO has two implementations of semismooth algorithms [22, 7, 8] for solving mixed com-
plementarity problems. Both are based upon a reformulation of the mixed complementarity
problem as a nonsmooth system of equations using the Fischer-Burmeister function [10]. A
nonsmooth Newton method is applied to the reformulated system to calculate a solution.
The theoretical properties of such methods are detailed in the aforementioned references.

The Fischer-Burmeister function, φ : R2 → R, is defined as,

φ(a, b) :=
√

a2 + b2 − a− b.

This function has the following key property

φ(a, b) = 0 ⇔ a ≥ 0, b ≥ 0, ab = 0

used when reformulating the mixed complementarity problem the system of equations
Φ(x) = 0 where Φ : Rn → Rn. The reformulation is defined component-wise as

Φi(x) :=





φ(xi − li, Fi(x)) if −∞ < li < ui = ∞,
−φ(ui − xi,−Fi(x)) if −∞ = li < ui < ∞,
φ(xi − li, φ(ui − xi,−Fi(x))) if −∞ < li < ui < ∞,
−Fi(x) if −∞ = li < ui = ∞,
li − xi if −∞ < li = ui < ∞.

We note that Φ is not differentiable everywhere, but satisfies a semismoothness property
[19, 26, 27]. Furthermore, the natural merit function, Ψ(x) := 1

2‖Φ(x)‖2
2, is continuously

differentiable.
The two semismooth TAO solvers both solve the system Φ(x) = 0 by applying a non-

smooth newton method with a line-search. We calculate a direction, dk, by solving the
system Hkdk = −Φ(xk) where Hk is an element of the B-subdifferential [27] of Φ at xk. If
the direction calculated does not satisfy a suitable descent condition, then we use the neg-
ative gradient of the merit function, −∇Ψ(xk), as the search direction. A standard Armijo
search [1] is used to find the new iteration. Non-monotone searches [11] are also available
by setting appropriate run-time options. See Section 6.2 for further details.
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The first semismooth algorithm available in TAO is not guaranteed to remain feasible
with respect to the bounds, [`, u], and is termed an infeasible semismooth method. This
method can be specified using the TaoMethod tao ssils. In this case, the descent test
used is that

∇Ψ(xk)T dk ≤ −δ‖dk‖ρ.

Both δ > 0 and ρ > 2 can be modified using the run-time commands -tao ssils delta
<delta> and -tao ssils rho <rho> respectively. By default, δ = 10−10 and ρ = 2.1.

An alternative is to remain feasible with respect to the bounds by using a projected
Armijo line-search. This method can be specified using the TaoMethod tao ssfls. The
descent test used is the same as above where the direction in this case corresponds to the
first part of the piece-wise linear arc searched by the projected line-search. Both δ > 0
and ρ > 2 can be modified using the run-time commands -tao ssfls delta <delta> and
-tao ssfls rho <rho> respectively. By default, δ = 10−10 and ρ = 2.1.

The recommended algorithm is the infeasible semismooth method, tao ssils, because
of its strong global and local convergence properties. However, if it is known that F is not
defined outside of the box, [`, u], perhaps due to the presence of log functions, the feasible
algorithm, tao ssfls, is a reasonable alternative.
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Table 4.2: Summary of nls options
Name Value Default Description
-tao nls ksp type cg, stcg, gltr, petsc cg Type of Krylov subspace

method to use when solving
linear system

-tao nls pc type none, ahess, bfgs,
petsc

bfgs Type of preconditioner to use
when solving linear system

-tao nls bfgs scale type ahess, phess, bfgs phess Type of scaling matrix to use
with BFGS preconditioner

-tao nls sval double 0 Initial perturbation value
-tao nls imin double 10−4 Minimum initial perturbation

value
-tao nls imax double 100 Maximum initial perturbation

value
-tao nls imfac double 0.1 Factor applied to norm of gra-

dient when initializing pertur-
bation

-tao nls pmax double 100 Maximum perturbation when
increasing value

-tao nls pgfac double 10 Growth factor applied to
perturbation when increasing
value

-tao nls pmgfac double 0.1 Factor applied to norm of gra-
dient when increasing pertur-
bation

-tao nls pmin double 10−12 Minimum perturbation when
decreasing value; smaller val-
ues set to zero

-tao nls psfac double 0.4 Shrink factor applied to per-
turbation when decreasing
value

-tao nls pmsfac double 0.1 Factor applied to norm of gra-
dient when decreasing pertur-
bation
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Table 4.3: Summary of nls options (continued)
Name Value Default Description
-tao nls init type constant, direction, in-

terpolation
interpolation Method used to initialize

trust-region radius when using
stcg or gltr

-tao nls mu1 i double 0.35 µ1 in interpolation init
-tao nls mu2 i double 0.50 µ2 in interpolation init
-tao nls gamma1 i double 0.0625 γ1 in interpolation init
-tao nls gamma2 i double 0.50 γ2 in interpolation init
-tao nls gamma3 i double 2.00 γ3 in interpolation init
-tao nls gamma4 i double 5.00 γ4 in interpolation init
-tao nls theta i double 0.25 θ in interpolation init
-tao nls update type step, reduction, inter-

polation
step Method used to update trust-

region radius when using stcg
or gltr

-tao nls nu1 double 0.25 ν1 in step update
-tao nls nu2 double 0.50 ν2 in step update
-tao nls nu3 double 1.00 ν3 in step update
-tao nls nu4 double 1.25 ν4 in step update
-tao nls omega1 double 0.25 ω1 in step update
-tao nls omega2 double 0.50 ω2 in step update
-tao nls omega3 double 1.00 ω3 in step update
-tao nls omega4 double 2.00 ω4 in step update
-tao nls omega5 double 4.00 ω5 in step update
-tao nls eta1 double 10−4 η1 in reduction update
-tao nls eta2 double 0.25 η2 in reduction update
-tao nls eta3 double 0.50 η3 in reduction update
-tao nls eta4 double 0.90 η4 in reduction update
-tao nls alpha1 double 0.25 α1 in reduction update
-tao nls alpha2 double 0.50 α2 in reduction update
-tao nls alpha3 double 1.00 α3 in reduction update
-tao nls alpha4 double 2.00 α4 in reduction update
-tao nls alpha5 double 4.00 α5 in reduction update
-tao nls mu1 double 0.10 µ1 in interpolation update
-tao nls mu2 double 0.50 µ2 in interpolation update
-tao nls gamma1 double 0.25 γ1 in interpolation update
-tao nls gamma2 double 0.50 γ2 in interpolation update
-tao nls gamma3 double 2.00 γ3 in interpolation update
-tao nls gamma4 double 4.00 γ4 in interpolation update
-tao nls theta double 0.05 θ in interpolation update

33



Table 4.4: Summary of ntr options
Name Value Default Description
-tao ntr ksp type stcg, gltr stcg Type of Krylov subspace

method to use when solving
linear system

-tao ntr pc type none, ahess, bfgs,
petsc

bfgs Type of preconditioner to use
when solving linear system

-tao ntr bfgs scale type ahess, bfgs ahess Type of scaling matrix to use
with BFGS preconditioner

-tao ntr init type constant, direction, in-
terpolation

interpolation Method used to initialize
trust-region radius

-tao ntr mu1 i double 0.35 µ1 in interpolation init
-tao ntr mu2 i double 0.50 µ2 in interpolation init
-tao ntr gamma1 i double 0.0625 γ1 in interpolation init
-tao ntr gamma2 i double 0.50 γ2 in interpolation init
-tao ntr gamma3 i double 2.00 γ3 in interpolation init
-tao ntr gamma4 i double 5.00 γ4 in interpolation init
-tao ntr theta i double 0.25 θ in interpolation init
-tao ntr update type reduction, interpola-

tion
reduction Method used to update trust-

region radius
-tao ntr eta1 double 10−4 η1 in reduction update
-tao ntr eta2 double 0.25 η2 in reduction update
-tao ntr eta3 double 0.50 η3 in reduction update
-tao ntr eta4 double 0.90 η4 in reduction update
-tao ntr alpha1 double 0.25 α1 in reduction update
-tao ntr alpha2 double 0.50 α2 in reduction update
-tao ntr alpha3 double 1.00 α3 in reduction update
-tao ntr alpha4 double 2.00 α4 in reduction update
-tao ntr alpha5 double 4.00 α5 in reduction update
-tao ntr mu1 double 0.10 µ1 in interpolation update
-tao ntr mu2 double 0.50 µ2 in interpolation update
-tao ntr gamma1 double 0.25 γ1 in interpolation update
-tao ntr gamma2 double 0.50 γ2 in interpolation update
-tao ntr gamma3 double 2.00 γ3 in interpolation update
-tao ntr gamma4 double 4.00 γ4 in interpolation update
-tao ntr theta double 0.05 θ in interpolation update
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Chapter 5

TAO Applications using PETSc

The solvers in TAO address applications that have a set of variables, an objective function,
and constraints on the variables. Many solvers also require derivatives of the objective and
constraint functions. To use the TAO solvers, the application developer must define a set of
variables, implement routines that evaluate the objective function and constraint functions,
and pass this information to a TAO application object.

TAO uses vector and matrix objects to pass this information from the application to
the solver. The set of variables, for instance, is represented in a vector. The gradient of
an objective function f : Rn → R, evaluated at a point, is also represented as a vector.
Matrices, on the other hand, can be used to represent the Hessian of f or the Jacobian of a
constraint function c : Rn → Rm. The TAO solvers use these objects to compute a solution
to the application.

The PETSc package provides parallel and serial implementations of these objects and
offers additional tools intended for high-performance scientific applications. The Vec and
Mat types in PETSc represent the vectors and matrices in a TAO application. This chapter
will describe how to create these an application object and give it the necessary proper-
ties. This chapter will also describe how to use the TAO solvers in conjunction with this
application object.

5.1 Header File

TAO applications written in C/C++ should have the statement
#include "tao.h"

in each file that uses a routine in the TAO libraries. All of the required lower level include
files such as “tao solver.h” and “taoapp.h” are automatically included within this high-level
file.

5.2 Create and Destroy

To create an application object, first declare a TAO APPLICATION variable. This variable is
only a pointer. The application object associated with it can be created using the routine

TaoApplicationCreate(MPI_Comm, TAO_APPLICATION*);
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Much like creating PETSc vector and matrix objects, the first argument is an MPI commu-
nicator. An MPI [13] communicator indicates a collection of processors that will be used to
evaluate the objective function, compute constraints, and provide derivative information.
When only one processor is being used, the communicator MPI COMM SELF can be used with
no understanding of MPI. Even parallel users need to be familiar with only the basic con-
cepts of message passing and distributed-memory computing. Most applications running
TAO in parallel environments can employ the communicator MPI COMM WORLD to indicate
all processes in a given run.

The second argument is the address of a TAO APPLICATION variable. This routine will
create a new application object and set the variable, which is a pointer, to the address of the
object. This application variable can now be used by the developer to define the application
and by the TAO solver to solve the application.

Elsewhere in this chapter, the TAO APPLICATION variable will be referred to as the ap-
plication object.

After solving the application, the command

TaoAppDestroy(TAO_APPLICATION);

will destroy the application object and free the work space associated with it.

5.3 Defining Variables

In all of the optimization solvers, the application must provide a Vec object of appropriate
dimension to represent the variables. This vector will be cloned by the solvers to create
additional work space within the solver. If this vector is distributed over multiple processors,
it should have a parallel distribution that allows for efficient scaling, inner products, and
function evaluations. This vector can be passed to the application object using the routine

TaoAppSetInitialSolutionVec(TAO_APPLICATION,Vec);

When using this routine, the application should initialize the vector with an approximate so-
lution of the optimization problem before calling the TAO solver. If you do not know of a so-
lution that that can be used, the routine TaoAppSetDefaultSolutionVec(TAO APPLICATION,Vec);
can be used to declare variables that will in be set to zero or some other default solution.

This vector will be used by the TAO solver to store the solution. Elsewhere in the
application, this solution vector can be retieved from the application object using the routine

TaoAppGetSolutionVec(TAO_APPLICATION, Vec *);

This routine takes the address of a Vec in the second argument and sets it to the solution
vector used in the application.

5.4 Application Context

Writing an application using the TAO APPLICATION object may require use of an application
context. An application context is a structure or object defined by an application developer,
passed into a routine also written by the application developer, and used within the routine
to perform its stated task.
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For example, a routine that evaluates an objective function may need parameters, work
vectors, and other information. This information, which may be specific to an application
and necessary to evaluate the objective, can be collected in a single structure and used
as one of the arguments in the routine. The address of this structure will be cast as type
(void*) and passed to the routine in the final argument. There are many examples of these
structures in the TAO distribution.

This technique offers several advantages. In particular, it allows for a uniform interface
between TAO and the applications. The fundamental information needed by TAO appears
in the arguments of the routine, while data specific to an application and its implementation
is confined to an opaque pointer. The routines can access information created outside the
local scope without the use of global variables. The TAO solvers and application objects
will never access this structure, so the application developer has complete freedom to define
it. In fact, these contexts are completely optional – a NULL pointer can be used.

5.5 Objective Function and Gradient Routines

TAO solvers that minimize an objective function require the application to evaluate the
objective function. Some solvers may also require the application to evaluate derivatives of
the objective function. Routines that perform these computations must be identified to the
application object and must follow a strict calling sequence.

Routines that evaluate an objective function f : Rn → R, should follow the form:

EvaluateObjective(TAO_APPLICATION,Vec,double*,void*);

The first argument is the application object, the second argument is the n-dimensional
vector that identifies where the objective should be evaluated, and the fourth argument
is an application context. This routine should use the third argument to return objective
value, evaluated at the given point specified the by the vector in the second argument.

This routine, and the application context, should be passed to the application object
using the routine

TaoAppSetObjectiveRoutine(TAO_APPLICATION,
int(*)(TAO_APPLICATION,Vec,double*,void*),
void*);

The first argument in this routine is the application object, the second argument is a
function pointer to the routine that evaluates the objective, and the third argument is the
pointer an appropriate application context.

Although final argument may point to anything, it must be cast as a (void*) type.
This pointer will be passed back to the developer in the fourth argument of the routine that
evaluates the objective. In this routine, the pointer can be cast back to the appropriate
type. Examples of these structures and there usage are provides in the distribution.

Most TAO solvers also require gradient information from the application . The gradient
of the objective function can be specified in a similar manner. Routines that evaluate the
gradient should have the calling sequence

EvaluateTheGradient(TAO_APPLICATION,Vec,Vec,void*);
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In this routine, the first argument is the application object, the second argument is the
variable vector, the third argument is the gradient, and the fourth argument is the user-
defined application context. Only the third argument in this routine is different from the
arguments in the routine that evaluates the objective function. The numbers in the gradient
vector have no meaning when passed into this routine, but should represent the gradient
of the objective at the specified point at the end of the routine. This routine, and the
user-defined pointer, can be passed to the application object using the routine:

TaoAppSetGradientRoutine(TAO_APPLICATION,
int (*)(TAO_APPLICATION,Vec,Vec,void*),
void *);

In this routine, the first argument is the application object, the second argument is the
function pointer, and the third object is the application context, cast to (void*).

Instead of evaluating the objective and its gradient in separate routines, TAO also allows
the user to evaluate the function and the gradient at the same routine. In fact, some solvers
are more efficient when both function and gradient information can be computed in the
same routine. These routines should follow the form

EvaluateFunctionGradient(TAO_APPLICATION,Vec,double*,Vec,void*);
where the first argument is the TAO solver, and the second argument points to the input
vector for use in evaluating the function and gradient. The third argument should return
the function value, while the fourth argument should return the gradient vector, and the
fifth argument is a pointer to a user-defined context. This context and the name of the
routine should be set with the call:

TaoAppSetObjectiveAndGradientRoutine(TAO_APPLICATION,
int (*)(TAO_APPLICATION,Vec,double*,Vec,void*),
void *);

The arguments of this routine are the TAO application, a function name, and a pointer to
a user-defined context.

The TAO example problems demonstrate the use of these application contexts as well
as specific instances of function, gradient, and Hessian evaluation routines. All of these
routines should return the integer 0 after successful completion and a nonzero integer if the
function is undefined at that point or an error occurred.

5.6 Hessian Evaluation

Some optimization routines also require a Hessian matrix from the user. The routine that
evaluates the Hessian should have the form:

EvaluateTheHessian(TAO_APPLICATION,Vec,Mat*,Mat*,MatStructure*,void*);
The first argument of this routine is a TAO application. The second argument is the point
at which the Hessian should be evaluated. The third argument is the Hessian matrix, and
the sixth argument is a user-defined context. Since the Hessian matrix is usually used in
solving a system of linear equations, a preconditioner for the matrix is often needed. The
fourth argument is the matrix that will be used for preconditioning the linear system. In
most cases, this matrix will be the same as the Hessian matrix. The fifth argument is the
flag used to set the Hessian matrix and linear solver in the routine KSPSetOperators().

One can set the Hessian evaluation routine by calling
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int TaoAppSetHessianRoutine(TAO_APPLICATION,
int (*)(TAO_APPLICATION,Vec,Mat*,Mat*,MatStructure*,void*),
void *)

The first argument is the TAO application, the second argument is the function that eval-
uates the Hessian, and the third argument is a pointer to a user defined context, cast as a
void* pointer.

For solvers that evaluate the Hessian, the matrices used to store the Hessian should be
set using

TaoAppSetHessianMat(TAO_APPLICATION,Mat,Mat);

The first argument is the TAO application, the second argument is the Hessian matrix, and
the third argument is the preconditioning matrix. In most applications, these two matrices
will be the same structure.

5.6.1 Finite Differences

Finite differences approximations can be used to compute the gradient and the Hessian of
an objective function. These approximations will slow down the solve considerably and are
only recommended for checking the accuracy of hand-coded gradients and Hessians. These
routines are

TaoAppDefaultComputeGradient(TAO_APPLICATION, Vec, Vec, void*);

TaoAppDefaultComputeHessian( TAO_APPLICATION, Vec, Mat*, Mat*,
MatStructure*, void*);

and
TaoAppDefaultComputeHessianColor( TAO_APPLICATION, Vec, Mat*, Mat*,

MatStructure*, void* );

These routines can be set using TaoAppSetGradientRoutine() and TaoAppSetHessianRoutine()
or through the options database. If finite differencing is used with coloring, the routine

TaoAppSetColoring(TAO_APPLICATION, ISColoring);

should be used to specify the coloring.
It is also possible to use finite difference approximations to directly check the correctness

of an application’s gradient and/or Hessian evaluation routines. This can be done using
the special TAO solver tao fd test together with the options -tao test gradient or
-tao test hessian.

5.6.2 Matrix-Free methods

TAO fully supports matrix-free methods. The matrices specified in the Hessian evaluation
routine need not be conventional matrices; instead, they can point to the data required to
implement a particular matrix-free method. The matrix-free variant is allowed only when
the linear systems are solved by an iterative method in combination with no precondition-
ing (PCNONE or -pc type none), a user-provided preconditioner matrix, or a user-provided
preconditioner shell (PCSHELL); that is, obviously matrix-free methods cannot be used if a
direct solver is to be employed. Details about using matrix-free methods are provided in
the PETSc Users Manual.
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5.7 Bounds on Variables

Some optimization problems also impose constraints upon the variables. The constraints
may impose simple bounds upon the variables, or require that the variables satisfy a set of
linear or nonlinear equations.

The simplest type of constraint upon an optimization problem puts lower or upper
bounds upon the variables. Vectors that represent lower and upper bounds for each variable
can be set with the command

TaoAppSetVariableBoundsRoutine(TAO_APPLICATION,
int (*)(TAO_APPLICATION, Vec,Vec,void*),void *);

The first vector and second vectors should contain the lower and upper bounds, respectively.
When no upper or lower bound exists for a variable, the bound may be set to TAO INFINITY
or TAO NINFINITY. After the two bound vectors have been set, they may be accessed with
the with the command TaoGetApplicationVariableBounds(). Since not all solvers use
bounds on variables, the user must be careful to select a type of solver that acknowledges
these bounds.

5.8 Complementarity

Constraints in the form of nonlinear equations have the form C(X) = 0 where C : Rn → Rm.
These constraints should be specified in a routine, written by the user, that evaluates C(X).
The routine that evaluates the constraint equations should have the form:

int EqualityConstraints(TAO_APPLICATION,Vec,Vec,void*);

The first argument of this routine is a TAO application object. The second argument is the
variable vector at which the constraint function should be evaluated. The third argument
is the vector of function values C, and the fourth argument is a pointer to a user-defined
context. This routine and the user-defined context should be set in the TAO solver with
the command

TaoAppSetConstraintRoutine(TAO_APPLICATION,
int (*)(TAO_APPLICATION,Vec,Vec,void*),
void*);

In this function, first argument is the TAO application, the second argument is vector in
which to store the function values, and the third argument is a pointer to a user-defined
context that will be passed back to the user.

The Jacobian of the function C is the matrix in Rm×n such that each column contains
the partial derivatives of f with respect to one variable. The evaluation of the Jacobian of
f should be performed in a routine of the form

int J(TAO_APPLICATION,Vec,Mat*,Mat*,MatStructure*,void*);

In this function, the second argument is the variable vector at which to evaluate the Jacobian
matrix, the third argument is the Jacobian matrix, and the sixth argument is a pointer to
a user-defined context. This routine should be specified using

TaoAppSetJacobianRoutine(TAO_APPLICATION,Mat,
int (*)(TAO_APPLICATION,Vec,Mat*,Mat*, MatStructure*,void*),
void*);
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The first argument is the TAO application, the second argument is the matrix in which
the information can be stored, the third argument is the function pointer, and the fourth
argument is an optional user-defined context. The Jacobian matrix should be created in a
way such that the product of it and the variable vector can be put in the constraint vector.

For solvers that evaluate the Jacobian, the matrices used to store the Jacobian should
be set using

TaoAppSetJacobianMat(TAO_APPLICATION,Mat,Mat);

The first argument is the TAO application, the second argument is the Jacobian matrix, and
the third argument is the preconditioning matrix. In most applications, these two matrices
will be the same structure.

5.9 Monitors

By default the TAO solvers run silently without displaying information about the iterations.
The user can initiate monitoring with the command

int TaoSetMonitor(TAO_SOLVER solver,
int (*mon)(TAO_SOLVER tao,void* mctx),
void *mctx);

The routine, mon indicates a user-defined monitoring routine and mctx denotes an op-
tional user-defined context for private data for the monitor routine.

The routine set by TaoAppSetMonitor() is called once during each iteration of the
optimization solver. Hence, the user can employ this routine for any application-specific
computations that should be done after the solution update. .

TaoAppSetMonitor(TAO_APPLICATION,
int (*)(TAO_APPLICATION,void*),void *);

5.10 Linear Solvers

One of the most computationally intensive phases of many optimization algorithms involves
the solution of systems of linear equations. The performance of the linear solver may be
critical to an efficient computation of the solution. Since linear equation solvers often have
a wide variety of options associated with them, TAO allows the user to access the linear
solver with the command

TaoAppGetKSP(TAO_APPLICATION, KSP *);

With access to the KSP object, users can customize it for their application to achieve
additional performance.

5.11 Application Solutions

Once the application object has the objective function, constraints, derivatives, and other
features associated with it, a TAO solver can be applied to the application. For further
information about how to create a TAO solver, see the previous chapter.

Once the TAO solver and TAO application object have been created and customized,
they can be matched with one another using the routine
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TaoSetupApplicationSolver( TAO_APPLICATION, TAO_SOLVER);

This routine will set up the TAO solver for the application. Different solvers may set
up differently, but they typically create the work vectors and linear solvers needed to
find a solution. These structures were not created during the creation of the solver be-
cause the size of the application was not known. After calling this routine the routine
TaoAppGetTaoSolver() can be used to obtain the TAO solver object. If not called di-
rectly by the application, TaoSetupApplicationSolver() will be executed inside of the
subroutine TaoSolveApplication().

The routine

TaoGetGradientVec( TAO_SOLVER, Vec*);

will set a pointer to a Vec to the vector object containing the gradient vector and the routine

TaoGetVariableBoundVecs( TAO_SOLVER, Vec*, Vec*);

will set the pointers to the lower and upper bounds on the variables – if they exist. These
vectors may be viewed at before, during, and after the solver is running.

Options for the application and solver can be be set from the command line using the
routine

TaoSetOptions( TAO_APPLICATION, TAO_SOLVER);

This routine will call TaoSetupApplicationSolver() if it has not been called already.
This command also provides information about runtime options when the user includes the
-help option on the command line.

Once the application and solver have been set up, the solver can be called using the
routine

TaoSolveApplication( TAO_APPLICATION, TAO_SOLVER);

This routine will call the TAO solver. If the routine TaoSetupApplicationSolver() has
not already been called, this routine will call it.

After a solution has been found, the routine

TaoCopyDualsOfVariableBounds( TAO_APPLICATION, Vec, Vec );

can compute the dual values of the variables bounds and copy them into the vectors passed
into this routine.

5.12 Linear Algebra Abstractions

Occasionally TAO users will have to interact directly with the linear algebra objects used
by the solvers. Solvers within TAO use vector, matrix, index set, and linear solver objects
that have no native data structures. Instead they have methods whose implementation is
uses structures and routines provided by PETSc or other external software packages.

Given a PETSc Vec object X, the user can create a TaoVec object. By declaring the
variables

TaoVec *xx;

the routine

TaoWrapPetscVec(Vec,TaoVec **);
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takes the Vec x and creates and sets TaoVec *xx equal to a new TaoVec object. This object
actually has the derived type TaoVecPetsc. Given a TaoVec whose underlying representa-
tion is a PETSc Vec, the command

TaoVecGetPetscVec( TaoVec *, Vec *);
will retrieve the underlying vector. The routine TaoVecDestroy() will destroy the TaoVec
object, but the Vec object must also be destroyed.

The routine
TaoWrapPetscMat(Mat,TaoMat **);

takes the Mat H and creates and sets TaoMat *HH equal to the new TaoMat object. The
second argument specifies whether the Mat object should be destroyed when the TaoVec
object is destroy. This object actually has the derived type TaoMatPetsc. Given a TaoMat
whose underlying representation is a PETSc Vec, the command

TaoMatGetPetscMat( TaoMat *, Mat *);
will retrieve the underlying matrix. The routine TaoMatDestroy() will destroy the TaoMat
object, but the Mat object must also be destroyed.

Similarly, the routine
TaoWrapKSP( KSP, TaoLinearSolver **);

takes a KSP object and creates a TaoLinearSolver object. The
TaoLinearSolverGetKSP( TaoLinearSolver *, KSP *);

gets the underlying KSP object from the TaoLinearSolver object.
For index sets, the routine
TaoWrapPetscIS( IS, int, TaoIndexSet **);

creates a TaoIndexSet object. In this routine, however, the second argument is the local
size of the vectors that this object will describe. For instance, this object may describe with
elements of a vector are positive. The second argument should be be local length of the
vector. The IS object will be destroyed when the TaoIndexSet is destroyed. The routine

TaoIndexSetGetPetscIS( TaoIndexSet *, IS *);
will return the underlying IS object.

5.13 Compiling and Linking

Portable TAO makefiles follow the rules and definitions of PETSc makefiles. In Figures 5.1
we present a sample makefile.

This small makefile is suitable for maintaining a single program that uses the TAO
library. The most important line in this makefile is the line starting with include:

include ${TAO_DIR}/bmake/tao_common

This line includes other makefiles that provide the needed definitions and rules for the
particular base software installations (specified by ${TAO DIR} and ${PETSC DIR}) and ar-
chitecture (specified by ${PETSC ARCH}), which are typically set as environmental variables
prior to compiling TAO source or programs. As listed in the sample makefile, the ap-
propriate include file is automatically completely specified; the user should not alter this
statement within the makefile.

TAO applications using PETSc should be linked with the to the PETSC SNES LIB library
as well as the TAO LIB library. This version uses PETSc 2.3.3, and the PETSC DIR variable
should be set accordingly. Many examples of makefiles can be found in the examples
directories.
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CFLAGS =

FFLAGS =

CPPFLAGS =

FPPFLAGS =

include ${TAO_DIR}/bmake/tao_common

minsurf1: minsurf1.o tao_chkopts

-${CLINKER} -o minsurf1 minsurf1.o ${TAO_LIB} ${PETSC_SNES_LIB}

${RM} minsurf1.o

Figure 5.1: Sample TAO makefile for a single C program

5.14 TAO Applications using PETSc and FORTRAN

Most of the functionality of TAO can be obtained by people who program purely in Fortran
77 or Fortran 90. Note, however, that we recommend the use of C and/or C++ because
these languages contain several extremely powerful concepts that the Fortran77/90 family
does not. The TAO Fortran interface works with both F77 and F90 compilers.

Since Fortran77 does not provide type checking of routine input/output parameters, we
find that many errors encountered within TAO Fortran programs result from accidentally
using incorrect calling sequences. Such mistakes are immediately detected during compila-
tion when using C/C++. Thus, using a mixture of C/C++ and Fortran often works well
for programmers who wish to employ Fortran for the core numerical routines within their
applications. In particular, one can effectively write TAO driver routines in C++, thereby
preserving flexibility within the program, and still use Fortran when desired for underlying
numerical computations.

Only a few differences exist between the C and Fortran TAO interfaces, all of which
are due to differences in Fortran syntax. All Fortran routines have the same names as
the corresponding C versions, and command line options are fully supported. The routine
arguments follow the usual Fortran conventions; the user need not worry about passing
pointers or values. The calling sequences for the Fortran version are in most cases identical
to the C version, except for the error checking variable discussed in Section 5.14.2. In
addition, the Fortran routine TaoInitialize(char *filename,int info) differs slightly
from its C counterpart; see the manual page for details.

5.14.1 Include Files

Currently, TAO users must employ the Fortran file suffix .F rather than .f. This convention
enables use of the CPP preprocessor, which allows the use of the #include statements that
define TAO objects and variables. (Familiarity with the CPP preprocessor is not needed
for writing TAO Fortran code; one can simply begin by copying a TAO Fortran example
and its corresponding makefile.)

The TAO directory ${TAO DIR}/include/finclude contains the Fortran include files
and should be used via statements such as the following:

#include "include/finclude/includefile.h"
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Since one must be very careful to include each file no more than once in a Fortran routine,
application programmers must manually include each file needed for the various TAO (or
other supplementary) components within their program. This approach differs from the
TAO C++ interface, where the user need only include the highest level file, for example,
tao.h, which then automatically includes all of the required lower level files. As shown
in the various Fortran example programs in the TAO distribution, in Fortran one must
explicitly list each of the include files.

5.14.2 Error Checking

In the Fortran version, each TAO routine has as its final argument an integer error variable,
in contrast to the C++ convention of providing the error variable as the routine’s return
value. The error code is set to be nonzero if an error has been detected; otherwise, it is
zero. For example, the Fortran and C++ variants of TaoSolveApplication() are given,
respectively, below, where info denotes the error variable:

call TaoSolveApplication(TAO_APPLICATION taoapp, TAO_SOLVER tao, int info)
info = TaoSolveApplication(TAO_APPLICATION taoapp, TAO_SOLVER tao)

Fortran programmers can use the error codes in writing their own tracebacks. For
example, one could use code such as the following:

call TaoSolveApplication(taoapp, tao, info)
if (info .ne. 0) then

print*, ’Error in routine ...’
return

endif

In addition, Fortran programmers can check these error codes with the macro CHKERRQ(),
which terminates all process when an error is encountered. See the PETSc users manual for
details. The most common reason for crashing PETSc Fortran code is forgetting the final
info argument.

Additional interface differences for Fortran users:

• TaoGetConvergenceHistory() – returns only the number of elements in the history.
Storage for the convergence information must be preallocated by the user and then
registered with TaoSetConvergenceHistory().

• TaoSetLinesearch() – use only the first and fourth arguments. The setup, options,
view, and destroy routines do not apply.

5.14.3 Compiling and Linking Fortran Programs

Figure 5.2 shows a sample makefile that can be used for TAO Fortran programs. You can
compile a debugging version of the program rosenbrock1f with make rosenbrock1f.
Note that the TAO Fortran interface library, given by ${TAO FORTRAN LIB}, must precede
the base TAO library, given by ${TAO LIB}, on the link line.
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CFLAGS =

FFLAGS =

CPPFLAGS =

FPPFLAGS =

include ${TAO_DIR}/bmake/tao_common

rosenbrock1f: rosenbrock1f.o tao_chkopts

-${FLINKER} -o rosenbrock1f rosenbrock1f.o ${TAO_FORTRAN_LIB} ${TAO_LIB} \

${PETSC_FORTRAN_LIB} ${PETSC_SNES_LIB}

${RM} rosenbrock1f.o

Figure 5.2: Sample TAO makefile for a single Fortran program

5.14.4 Additional Issues

The TAO library currently interfaces to the PETSc library for low-level system functionality
as well as linear algebra support. The PETSc users manual discusses additional Fortran
issues in these areas, including

• array arguments (e.g., VecGetArray()),

• calling Fortran Routines from C (and C Routines from Fortran),

• passing null pointers,

• duplicating multiple vectors, and

• matrix and vector indices.
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Chapter 6

Advanced Options

This section discusses options and routines that apply to all TAO solvers and problem
classes. In particular, we focus on convergence tests and line searches.

6.1 Convergence Tests

There are many different ways to define convergence of a solver. The methods TAO uses
by default are mentioned in Section 3.3. These methods include absolute and relative
convergence tolerances as well as a maximum number of iterations of function evaluations.
If these choices are not sufficient, the user can even specify a customized test.

Users can set their own customized convergence tests of the form
int conv(TAO_SOLVER tao, void *cctx);

The second argument is a pointer to a structure defined by the user. Within this routine, the
solver can be queried for the solution vector, gradient vector, or other statistic at the current
iteration through routines such as TaoGetSolutionStatus() and TaoGetTolerances().

To use this convergence test within a TAO solver, use the command
int TaoSetConvergenceTest(TAO_SOLVER solver,

int (*conv)(TAO_SOLVER tao,
void *cctx),

void *cctx);

The second argument of this command is the convergence routine, and the final argument
of the convergence test routine, cctx, denotes an optional user-defined context for private
data. The convergence routine receives the TAO solver and this private data structure. The
termination flag can be set using the routine

int TaoSetTerminationReason(TAO_SOLVER , TaoTerminationReason*);

6.2 Line Searches

Many solver in TAO require a line search. While these solver always offer a default line
search, alternative line searches can also be used. Line searches must have the form:

int L(TAO_SOLVER tao,TaoVec *xx,TaoVec *gg,TaoVec *dx, TaoVec *ww,
double *f, double *step,double *gdx,int *flg,void *lsctx);
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In this routine the first argument is the TAO solver, the second argument is the current
solution vector, the third argument is the gradient at the current point, the fourth argument
is the step direction, the fourth vector is a work vector, the fifth argument is the function
value, the sixth argument is the step length, the seventh argument is the inner product of
the gradient and direction vector used for the Armijo condition, the eighth argument is a
flag indicating success or failure of the line search, and the last argument is a pointer to
a structure that can be used to define the line search. When the routine is finished the
solution vector xx, gradient vector gg, function value f, step size step, and flg should be
updated to reflect the new solution.

This routine can be set with the function

int TaoSetLineSearch(TAO_SOLVER solver,
int (*setup)(TAO_SOLVER, void*),

int (*options)(TAO_SOLVER,void*),
int (*line)(TAO_SOLVER,TaoVec*,TaoVec*,TaoVec*,TaoVec*,

double*,double*,double*,int*,void*),
int (*viewit)(TAO_SOLVER,void*),

int (*destroy)(TAO_SOLVER,void*),
void *ctx);

In this routine, the fourth argument is the function pointer to the line search routine, and
the seventh argument is the pointer that will be passed to the line search routine. The other
arguments are optional function pointers than can be used to set up, view, and deallocate
the solver.
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Chapter 7

Adding a solver

7.1 Adding a Solver to TAO

New optimization solvers can be added to TAO. TAO provides tools for facilitate the im-
plementation of a solver. The advantages of implementing a solver using TAO are several.

1. TAO includes other optimization solvers with an identical interface, so application
problems may conveniently switch solvers to compare their effectiveness.

2. TAO provides support for function evaluations and derivative information. It allows
for the direct evaluation of this information by the application developer, and contains
limited support for finite difference, and allows the uses of matrix-free methods. The
solvers can obtain this function and derivative information through a simple interface
while the details of its computation are handled within the toolkit.

3. TAO provides line searches, convergence tests, monitoring routines, and other tools
which are helpful within an optimization algorithm. The availability of these tools
means that the developers of the optimization solver do not have to write these utili-
ties.

4. TAO offers vectors, matrices, index sets, and linear solvers that can be used by the
solver. These objects are standard mathematical constructions that have many dif-
ferent implementations. The objects may be distributed over multiple processors,
restricted to a single processor, have a dense representation, use a sparse data struc-
ture, or vary in many other ways. TAO solvers do not need to know how these objects
are represented or how the operations defined on them have been implemented. In-
stead, the solvers apply these operations through an abstract interface that leaves
the details to TAO and external libraries. This abstraction allows solvers to work
seamlessly with a variety of data structures while allowing application developers to
select data structures tailored for their purposes.

5. TAO supports an interface to PETSc and allows the integration of other libraries as
well. When used with PETSc, TAO provides the user a convenient method for setting
options at runtime, performance profiling, and debugging.
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7.2 TAO Interface with Solvers

TAO solvers must be written in C++ and include several routines with a particular calling
sequence. Two of these routines are mandatory: one that initializes the TAO structure
with the appropriate information and one that applies the algorithm to a problem instance.
Additional routines may be written to set some options within the solver, view the solver,
setup appropriate data structures, and destroy these data structures. In each of these
routines except the initialization routine, there are two arguments.

The first argument is always the TAO structure. This structure may be used to obtain
the vectors used to store the variables and the function gradient, evaluate a function and
gradient, solve a set of linear equations, perform a line search, and apply a convergence test.

The second argument is specific to this solver. This pointer will be set in the initialization
routine and cast to an appropriate type in the other routines. To implement the Fletcher -
Reeves conjugate gradient algorithm, for instance, the following structure may be useful.
typedef struct{

double beta;

TaoVec *gg;
TaoVec *dx; /* step direction */
TaoVec *ww; /* work vector */

} TAO_CG;

This structure contains two work vectors and a scalar. Vectors for the solution and gradient
are not needed here because the TAO structure has pointers to them.

7.2.1 Solver Routine

All TAO solvers have a routine that accepts a TAO structure and computes a solution. TAO
will call this routine when the application program uses the routine TaoSolve() and pass to
the solver information about the objective function and constraints, pointers to the variable
vector and gradient vector, and support for line searches, linear solvers, and convergence
monitoring. As an example, consider the following code which solves an unconstrained
minimization problem using the Fletcher–Reeves conjugate gradient method.

static int TaoSolve_CG_FR(TAO_SOLVER tao, void *solver){

TAO_CG *cg = (TAO_CG *) solver;
TaoVec *xx,*gg=cg->gg; /* solution vector, gradient vector */
TaoVec *dx=cg->dx, *ww=cg->ww;
int iter=0,lsflag=0,info;
double gnormPrev,gdx,f,gnorm,step=0;
TaoTerminateReason reason;

TaoFunctionBegin;
info=TaoCheckFG(tao);CHKERRQ(info);
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info=TaoGetSolution(tao,&xx);CHKERRQ(info);

info = TaoComputeMeritFunctionGradient(tao,xx,&f,gg);CHKERRQ(info);
info = gg->Norm2(&gnorm); CHKERRQ(info);

info = dx->SetToZero(); CHKERRQ(info);

cg->beta=0;
gnormPrev = gnorm;

/* Enter loop */
while (1){

/* Test for convergence */
info = TaoMonitor(tao,iter++,f,gnorm,0.0,step,&reason);CHKERRQ(info);
if (reason!=TAO_CONTINUE_ITERATING) break;

cg->beta=(gnorm*gnorm)/(gnormPrev*gnormPrev);
info = dx->Axpby(-1.0,gg,cg->beta); CHKERRQ(info);

info = dx->Dot(gg,&gdx); CHKERRQ(info);
if (gdx>=0){ /* If not a descent direction, use gradient */
cg->beta=0.0;
info = dx->Axpby(-1.0,gg,cg->beta); CHKERRQ(info);
gdx=-gnorm*gnorm;

}

/* Line Search */
gnormPrev = gnorm; step=1.0;
info = TaoLineSearchApply(tao,xx,gg,dx,ww,&f,&step,&lsflag);
info = gg->Norm2(&gnorm);CHKERRQ(info);

}

TaoFunctionReturn(0);
}

The first line of this routine cast the second argument to a pointer to a TAO CG data
structure. This structure contains pointers to three vectors and a scalar which will be
needed in the algorithm.

After declaring an initializing several variables, the solver first checks that the function
and gradient have been defined using the routine TaoCheckFG(). Next, the solver gets
the variable vector which was passed to TAO by the application program. Other solvers
may also want to get pointers to Hessian matrices, Jacobian matrices, or vectors contain-
ing bounds on the variables. The commands for these routines are TaoGetSolution(),
TaoGetVariableBounds(), TaoGetHessian(), and TaoGetJacobian().
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This solver lets TAO evaluate the function and gradient at the current point in the using
the routine TaoComputeFunctionGradient(). Other routines may be used to evaluate the
Hessian matrix or evaluate constraints. TAO may obtain this information using direct
evaluation of other means, but the these details do not affect our implementation of the
algorithm.

The norm of the gradient is a standard measure used by unconstrained minimization
solvers to define convergence. This quantity is always nonnegative and equals zero at the
solution. The solver will pass this quantity, the current function value, the current iteration
number, and a measure of infeasibility to TAO with the routine

int TaoMonitor(TAO_SOLVER,int,double,double,double,double,
TaoTerminateReason*);

Most optimization algorithms are iterative in nature, and solvers should include this com-
mand somewhere in each iteration. This routine records this information, applies any
monitoring routines and convergence tests set by default or the user.

In this routine, the second argument is the current iteration number, and the third
argument is the current function value. The fourth argument is a nonnegative error mea-
sure associated with the distance between the current solution and the optimal solution.
Examples of this measure are the norm of the gradient or the square root of a duality
gap. The fifth measure is a nonnegative error that is nonnegative and usually represents a
residual between the current function value and the optimal solution, such as the norm of
the gradient. The sixth argument is a nonnegative steplength, or the multiple of the step
direction added to the previous iterate. The results of the convergence test are returned
in the last argument. If the termination reason is TAO CONTINUE ITERATING, the algorithm
should continue.

After this monitoring routine, the solver computes a step direction using methods defined
on the TaoVec object. These methods include adding vectors together and computing an
inner product. A full list of these methods can be found in the manual pages.

Nonlinear conjugate gradient algorithms also require a line search. TAO provides several
line searches and support for using them. The routine

int TaoLineSearchApply(TAO_SOLVER tao, TaoVec *xx, TaoVec *gg, TaoVec *dx,
TaoVec *ww, double *f, double *step,
int*flag)

passes the current solution, gradient, and objective value to the solver and returns a new
solution, gradient, and objective value. More details on line searches can be found in the
Section 6.2 The details of this line search are should be specified elsewhere, when the line
search is created.

TAO also includes support for linear solvers. Although this algorithm does not require
one, linear solvers are an important part of many algorithms. Details on the use of these
solvers can be found in Section 5.10.

7.2.2 Creation Routine

The TAO solver is initialized to for a particular algorithm in a separate routine. This
routine sets default convergence tolerances, creates a line search or linear solver if needed,
and creates structures needed by this solver. For example, the routine that creates the
nonlinear conjugate gradient algorithm shown above can be implemented as follows.

52



EXTERN_C_BEGIN
int TaoCreate_CG_FR(TAO_SOLVER tao)
{
TAO_CG *cg;
int info;

TaoFunctionBegin;

info = TaoNew(TAO_CG,&cg); CHKERRQ(info);

info = TaoSetMaximumIterates(tao,2000); CHKERRQ(info);
info = TaoSetTolerances(tao,1e-4,1e-4,0,0); CHKERRQ(info);
info = TaoSetMaximumFunctionEvaluations(tao,4000); CHKERRQ(info);

info = TaoCreateMoreThuenteLineSearch(tao,0,0.1); CHKERRQ(info);

info = TaoSetTaoSolveRoutine(tao,TaoSolve_CG_FR,(void*)cg); CHKERRQ(info);
info = TaoSetTaoSetUpDownRoutines(tao,TaoSetUp_CG,TaoDestroy_CG); CHKERRQ(info);
info = TaoSetTaoOptionsRoutine(tao,TaoSetOptions_CG_FR); CHKERRQ(info);
info = TaoSetTaoViewRoutine(tao,TaoView_CG); CHKERRQ(info);

TaoFunctionReturn(0);
}
EXTERN_C_END

The first thing this routine does after declaring some variables, is allocate memory for the
TAO CG data structure. Clones of the the variable vector assed into TAO in the TaoCreate()
routine are used as the two work vectors. This routine also sets some default convergence
tolerances and creates a particular line search. These defaults could be specified in the
routine that solves the problem, but specifying them here gives the user the opportunity to
modify these parameters.

Finally, this solvers passes to TAO the names of all the other routines used by the solver.
Note that the lines EXTERN C BEGIN and EXTERN C END surround this routine. These

macros are required to preserve the name of this function without any name-mangling from
the C++ compiler.

7.2.3 Destroy Routine

Another routine needed by most solvers destroys the data structures creates by earlier rou-
tines. For the nonlinear conjugate gradient method discussed earlier, the following routine
destroys the two work vectors, the line search, and the TAO CG structure.

int TaoDestroy_CG(TAO_SOLVER tao, void *solver)
{
TAO_CG *cg = (TAO_CG *) solver;
int info;
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TaoFunctionBegin;

info = TaoVecDestroy(cg->gg); CHKERRQ(info);
info = TaoVecDestroy(cg->ww);CHKERRQ(info);
info = TaoVecDestroy(cg->dx);CHKERRQ(info);

info = TaoLineSearchDestroy(tao);CHKERRQ(info);
TaoFree(cg);

TaoFunctionReturn(0);
}

Other algorithms may destroy matrices, linear solvers, index sets, or other objects needed
by the solver. This routine is called from within the TaoDestroy() routine.

7.2.4 SetUp Routine

If this routine has been set by the initialization routine, TAO will call it during the
TaoSetApplication(). This routine is optional, but is often a used to allocate the gradient
vector, work vectors, and other data structures required by the solver. It should have the
form

int TaoSetUp_CG(TAO_SOLVER,void*);
{
int info;
TaoVec *xx;
TaoFunctionBegin;

info = TaoGetSolution(tao,&xx);CHKERRQ(info);
info = xx->Clone(&cg->gg); CHKERRQ(info);
info = xx->Clone(&cg->ww); CHKERRQ(info);
info = xx->Clone(&cg->dx); CHKERRQ(info);
TaoFunctionReturn(0);

}

The second argument can be cast to the appropriate data structure. Many solvers use
a similar routine to allocate data structures needed by the solver but not created by the
initialization routine.
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